

An Assessment of Attacks Strategies on the RSA Public-

Key Cryptosystem

Jiri Just and John Coffey
Department of Computer Science

The University of West Florida
Pensacola, FL 32514

ABSTRACT

The first part of this paper briefly describes the history of
RSA and the theory behind the scheme. The main part of
this article provides an overview of RSA attack strategies
which are grouped into major categories. Included are
descriptions and assessments of factoring attacks,
exponent-based attacks, forging RSA signatures, and
hardware-based attacks. Each of the categories is
analyzed for potential vulnerabilities that might be
exploited. The paper concludes with a discussion of the
overall security of this system.

1. INTRODUCTION

A fundamental requirement for Internet and other forms
of networking is secure transmission of data. The sender
must transmit data to the receiver without it being viewed
or modified. The receiver requires assurance that the data
was sent from the sender, not from someone using the
sender’s information. The objective of cryptography is
information security, and the advent of public key
cryptography was a significant step forward. One of the
first major advances in public key cryptography was the
RSA algorithm. It was the first algorithm known to be
suitable for signing messages as well as for encryption,
and is still widely used today for critical transmissions
such as credit card transactions.

The first paper on the RSA was due to Ron Rivest, Adi
Shamir and Leonard Adleman from MIT and was
published in 1978 [1]. Impetus for their work came from a
public-key cryptosystem conceived, but never
implemented by Diffie and Hellman [2]. MIT was granted
a patent for a communications system that used the
algorithm in 1983 [1]. The algorithm is based upon public
and private keys. The public key is made known and is
used to encrypt a message so that anyone can do so. Only
the recipient knows the private key which is needed to
decrypt. The public key has two parts, the modulus n and

the public exponent e. The private key has also modulus n
and the private exponent d which is kept secret. The
public and private keys are mathematical inverses of each
other.

The remainder of this article explores the security of RSA
and contains a survey of potential attacks on the
algorithm. The attacks are categorized either by the basic
approach taken, or by the part of the RSA system that the
attack seeks to exploit (the message itself or the
signature). The main attack categories, factoring,
exponent based and hardware based, are described. The
article closes by drawing some conclusions regarding
vulnerabilities in the RSA cryptosystem.

2. FACTORING ATTACKS ON RSA

Factoring attacks are based upon the fact that the private
key d can be computed if p and q can be discovered by
factoring n. Given n and e (which is already known) d can
be computed by solving the equation de≡mod φ (n) where
the totient is φ (n) = (p-1) (q-1). There are several
approaches to the factoring of large numbers. The next
sections will consider several in turn.

Brute-Force Factoring attack. This approach is based
on searching for factors of n, p, and q by trying all
possibilities. The size of the set of possible factors can be
decreased by finding the square root of n and also by
excluding even numbers and numbers ending in 5.
Protection against the brute-force attack is to pick large
primes p and q. Making p and q the same size also makes
factoring n harder. For instance, in the current RSA
competition, n is comprised of 205 digits. Therefore,
brute force methods are computationally intractable.

General purpose factoring methods: General purpose
factoring methods can be used to factor any numbers. One
of the earliest general purpose factoring methods was the
Sieve of Eratosthenes [3]. An algorithm called the general
number field sieve [4] is the most efficient algorithm

http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Encryption
http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Adi_Shamir
http://en.wikipedia.org/wiki/Adi_Shamir
http://en.wikipedia.org/wiki/Leonard_Adleman
http://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=US4405829
http://en.wikipedia.org/wiki/1983
http://en.wikipedia.org/wiki/Key_%28cryptography%29
http://en.wikipedia.org/wiki/Algorithmic_efficiency
http://en.wikipedia.org/wiki/Algorithm

known for factoring integers larger than 100 digits. An
older method called the quadratic sieve method is also
known. Both methods are based on the idea that one
might factor n using the respective sieve to determine
integers a, and b such that a2 ≡ b2 mod n and a ≡ (+-) b
mod n. Then, n divides a2 - b2= (a - b)(a + b), but neither
a-b nor a+b. Hence, gcd ((a-b), n) is not a trivial factor of
n. The general number field sieve or older quadratic sieve
differ in the specific way the integers a and b satisfying a2
≡ b2 mod n and a ≡ (+-)b mod n are found.

Crandall and Pomerance [5] present an algorithm that can
factor a 70 digit number. According to Silverman [6], the
algorithm will take about a day on modern computers.
However, general purpose factoring methods can not
factor any integer. General purpose factoring can be sped
up by parallel computation which is based on giving each
CPU a different set of polynomials. However, it is
impractical to factor 200 digit numbers because doing so
would require on the order of a billion times longer than
100-digit numbers according to Silverman [6]. Worse
still, it is not currently possible to factor 100-digit
numbers.

Special-purpose Factoring Methods: This type of
factoring depends on the form of p and q. These methods
are more efficient than general purpose ones if p and q are
in the right format. Pollard’s p-1 method [7] is one such
example. The algorithm is based on the fact that numbers
of the form ab − 1 tend to be highly composite when b
composite. Since it is computationally simple to evaluate
numbers of this form in modular arithmetic, the algorithm
makes it possible to check many potential factors quickly.
In particular, the method will find a factor p if b is
divisible by p − 1, hence the name. When p − 1 is smooth
(the product of only small integers) then this algorithm is
well-suited to the discovery of the factor p. However,
several other constraints must be satisfied for the method
to work. The main advantage of special-purpose factoring
methods is that if the number is in the right form, it can be
factored quite quickly.

Elliptic Curve Method. This method was introduced by
Lenstra [7] and is one of the fastest factoring methods for
numbers comprised of approximately 25 digits. It is an
improved version of the Pollard p-1 method. The Lenstra
elliptic curve factorization gets around the assumption
that n has a prime factor p such that p − 1 had only
"small" prime factors, by considering the group of a
random elliptic curve (an algebraic curve defined by an
equation of the form y2 = x3 + ax + b) over the finite field
Zp, rather than considering the multiplicative group of Zp
which always has order p-1. As demonstrated in a
theorem by Hasse the order of the group of an elliptic
curve over Zp varies between p+1-2*sqrt(p) and
p+1+2*sqrt(p), which bounds the number of points on an
elliptic curve over a finite field, above and below, and

randomly, and is likely to be smooth for some elliptic
curves. Elliptic curve factorization can be also executed
on more than one processor. Each processor will get its
own curve and will quit on first success. According to
Silverman [6], a 38 digit number was factored by this
method. A simple defense against this algorithm is to
make n large and the factors the same size, since the
algorithm starts with small factors first.

Factoring on a Quantum Computer. Shor’s algorithm
[8] is a polynomial-time integer factorization algorithm
designed for implementation on quantum computers. Like
many quantum computer algorithms, it is probabilistic: it
gives the correct answer with high probability, and the
probability of failure can be decreased by repeating the
algorithm. However, since a proposed answer is verifiable
in polynomial time, the algorithm can be modified to
work both correctly and efficiently.

The algorithm consists of an iterative process of
generating a random number a and computing gcd(a,N)
If a ≠ 1, the algorithm terminates with success. If not, a
period-finding routine based in a quantum computer is
called. The result of the quantum computation, r, is either
a solution to the problem or additional iterations are
performed. At present, it is difficult to state
authoritatively if Shor’s algorithm will be a threat to RSA
or not because the period-finding subroutine must be
tuned to each unique value of N and generally speaking,
quantum computing is still much more an area of research
than a scalable, deployable technology.

3. EXPONENT-BASED ATTACKS

To reduce encryption or signature-verification time, a
small public exponent e is often used. The smallest
possible value for e is 3. The following attacks are similar
to factoring attacks in the sense that the goal is to find p,
and q. However, low exponent attacks rely on a low
public exponent in order to find the prime factors. The
following attacks exploit low values of the exponent.

Wiener’s Attack. In 1990, Wiener [9] observed that
information encoded in the public exponent e might help
to factor n. Wiener proposed an attack on the RSA system
by a continued fraction approximation, using the public
key (n, e) to provide sufficient information to recover the
private key d. Wiener proved that if the keys in the RSA
system are chosen such that n= pq, where q < p < 2q, and
d <⅓4*sqrt(n), then given the public key (n, e) with de= 1
mod φ the private key d can be computed in linear time.

This approach only works if d is chosen to be small
relative to n. However some devices use small d because
they have limited computational power. Wiener proposes
certain techniques to avoid his attack such use of a large

http://en.wikipedia.org/wiki/Integer_factorization
http://en.wikipedia.org/wiki/Richard_Crandall
http://en.wikipedia.org/wiki/Carl_Pomerance
http://en.wikipedia.org/wiki/Modular_arithmetic
http://www.answers.com/topic/prime-number
http://www.answers.com/topic/group
http://www.answers.com/topic/elliptic-curve
http://www.answers.com/topic/algebraic-curve
http://www.answers.com/topic/finite-field
http://www.answers.com/topic/elliptic-curve
http://www.answers.com/topic/finite-field
http://en.wikipedia.org/wiki/Probabilistic

encryption exponent. Boneh and Durfee [10] extended
Wiener’s work by showing that the attacker can
efficiently compute d from (n, e) provided that d < N 0.292.
They expect their algorithm to work on d < N 0.5.
However, as stated in their conclusion, they can not state
the approach to their attack as a theorem since they can
not prove that it will always succeeds [10].

Small-Message Attack. RSA encryption is not effective
if both the message m to be encrypted and the exponent e
to be used for encryption are small relative to the modulus
n. If c=me < n is the cipher text, then m can be recovered
from c by ordinary root extraction (the operation of taking
an nth radical root of a number). Therefore, either the
public exponent should be large or the messages should
always be large. Practically speaking, a small public
exponent is often preferred with the message padded so
that it is large, in order to speed up the encryption and to
prevent Wiener’s attack.

Low-Exponent Attack with Multiple Recipients.
Hastad [11] showed that low exponent RSA is not secure
if the same message is encrypted to several receivers. For
example, let e = 3. Then if the number of receivers is 7,
the eavesdropper can find the plaintext from the seven
cipher texts of each receiver. If three senders participating
in the same system encrypt the same message m using the
same public exponent 3, the attacker can compute m from
the three cipher texts even if the senders are using
different modulo values: n1, n2, and n3.

Generally, if k plain texts are encrypted with the same
exponent e, an attacker can solve for m in polynomial
time using lattice reduction techniques. This result has
been extended by Coppersmith [12] who showed that
RSA encryption with exponent 3 is vulnerable if the
opponent knows two-thirds of the message, or if two
messages agree over eight-ninths of their length. Low-
Exponent attack is also a concern if the messages are
related in a known way. Padding the messages with
pseudorandom strings prior to encryption prevents
mounting this attack in practice. If the messages are
related in a known way, they should not be encrypted
with many RSA keys. A recommended value of e that is
commonly used today is e=216 +1. One advantage of this
value for e is that its binary expansion has only two ones,
which implies that the square-and-multiply algorithm
requires very few operations.

4. FORGING RSA SIGNATURES

A fairly significant real-world scare occurred because of
an implementation flaw in error reporting during
signature verification [18]. This vulnerability afforded the
possibility of signatures being forged using only an RSA
public key (without requiring the RSA private key). This
problem included all RSA signatures.

The source of the problem was reportedly a failure of the
implementation of the software that did not allow it to
detect signatures which have been crafted to appear
mostly valid. This failure to detect and alert on this
category of signatures could create a situation where a
forged signature may be trusted. The end result of a
successful attack could include abusing trust relationships
that have been established based on RSA keys or digital
certificates, such as posing as a trusted party and signing a
certificate or key. The vulnerability was detected and
remediated before significant damage occurred.

5. ADAPTIVE CHOSEN CIPHERTEXT ATTACKS

In 1998, Bleichenbacher [13] described the first practical
adaptive chosen ciphertext attack, against RSA-encrypted
messages using the PKCS #1 v1 padding scheme (a
padding scheme randomizes and adds structure to an
RSA-encrypted message, so it is possible to determine
whether a decrypted message is valid.) The
Bleichenbacher sent millions of test ciphertexts to a
decrypter in order to reveal the content of an RSA
encrypted message. He showed that an RSA private-key
operation can be performed if the attacker has access to an
oracle that, for any chosen ciphertext, returns only one bit
telling whether the ciphertext corresponds to some
unknown block of data encrypted using PKCS #1. This
method is especially dangerous for servers using SSL.

A recipient (server), may be vulnerable to this attack if it
processes many messages, and reveals the success or
failure of the operations. A protocol such as SSL may not
require client authentication, so the attacker can easily
remain anonymous through the process. In order to
prevent adaptive-chosen-ciphertext attacks, it is necessary
to use an encryption or encoding scheme that limits
ciphertext malleability (transformations on the ciphertext
to produce meaningful changes in the plaintext). Another
countermeasure is to change the server’s key pair
frequently.

6. SUPERENCRYPTION

SuperEncryption is a process of running an already
encrypted file through an encryption algorithm. A
SuperEncryption attack against RSA was developed and
reported by Simmons and Norris [14] shortly after RSA
was published. It is based on the fact that a sufficient
number of encryptions will eventually produce the
original message. This result occurs because the RSA
encryption function is mapped onto a finite set, which
makes the graph of the function a union of disjoint cycles.
This attack was a real threat to RSA while the number of
encryptions required was small. However, if the
communications use large primes which will be used in
random, superencryption becomes impractical.

http://mathworld.wolfram.com/RadicalRoot.html
http://en.wikipedia.org/wiki/1998
http://en.wikipedia.org/w/index.php?title=Daniel_Bleichenbacher&action=edit
http://en.wikipedia.org/wiki/Adaptive_chosen_ciphertext_attack
http://en.wikipedia.org/wiki/Padding_%28cryptography%29

7. HARDWARE-BASED ATTACKS

The next two attacks can be categorized as hardware
based because they exploit knowledge of the sender’s or
recipient’s hardware.

Timing attacks. In 1995, Kocher[15] described a timing
attack on RSA based on knowing specific attributes of the
recipient’s hardware. If the attacker has ciphertext from
the sender, the ciphertext can be used to determine the
private key by measuring decryption times on the
recipient. This attack can be used either to determine d or
to attack the RSA signature. In 2003, Boneh and
Brumley[16] demonstrated a different timing attack that
exploits data recovered from a Secure Socket Layer
(SSL)-enabled server to attain an RSA factorization. This
attack takes advantage of information leaked by the
Chinese remainder theorem optimization used by many
RSA implementations. The most effective defense is to
arrange to have the same decryption times for different
ciphertext values.

Branch Prediction Analysis (BPA) attacks. Many
processors use a Branch predictor to determine whether a
conditional branch in the instruction flow of a program is
likely to be taken or not. Usually these processors also
implement Simultaneous multithreading (SMT). Branch
Prediction Analysis attacks use a spy process running in
parallel on the same processor as a process executing an
RSA algorithm to discover the private key. Simple
Branch Prediction Analysis (SBPA) claims to improve
BPA in a non-statistical way. In [17], the authors of
SBPA claim to have discovered 508 out of 512 bits of an
RSA key in a single signing operation. Their attack was
against an OpenSSL RSA implementation. They conclude
that memory protection, sandboxing and virtualization,
fail to prevent such “side channel” attacks and that these
attacks are much more dangerous than “pure” timing
attacks.

8. CONCLUSIONS

While this article presents a snapshot in time, the question
of vulnerabilities in the RSA system is an ongoing one.
As an example, it is now feasible to factor keys of the
lengths used in the earliest specifications of the system.
The simple remedy was to make keys longer. However,
some current vulnerabilities might be identified. Clearly,
the exponent must be larger than 3 to decrease the
possibility of low exponent attacks. Specific
implementations might introduce vulnerabilities that do
not stem from the specification, as was the case with the
signature forgery attacks. In the case of servers, the key
should be changed often to prevent adaptive chosen
ciphertext attacks. Otherwise, RSA appears to contain
few vulnerabilities that can be exploited However, with
advances in quantum computers, all bets may be off.

In summary, it is possible that the main area of
vulnerability in this scheme pertains to the human beings
who create and use implementations of it. RSA software
comes with default settings which differ from company to
company. Most implementations are set up to provide
basic security, which means that the exponent used can be
low and can allow the attacker to use one of the low
exponent attacks. The key can be set to 64 bits which is
easy to break using some factoring methods. New
installations must always be checked for these settings to
ensure security. It is worth noting that as computing
methods evolve, cryptology will also advance, but so will
the sophistication of attacks. Consequently, the security of
RSA will remain a matter requiring ongoing vigilance.

9. REFERENCES

[1] R. Rivest, A. Shamir, and L. Adleman, A method for
obtaining digital signatures and public-key
cryptosystems. Communications of the ACM,
Volume 21 , No. 2. 1978, pp. 120-126.

[2] W. Diffie and M. Hellman, New directions in
cryptography, IEEE Transactions on Information
Theory, 6. 1976, pp 644-654.

[3] P. Pritchard, Linear prime-number sieves: a family
tree. Scientific Computer Programming Volume 9,
No. 1, 1987, pp 17-35.

[4] J.P. Buhler, H.W. Lenstra, and C. Pomerance, The
development of the number field sieve, Volume
1554 of Lecture Notes in Computer Science,
Springer-Verlag, 1994.

[5] R. Crandall and C. Pomerance ,Prime Numbers: A
Computational Perspective, Springer. ISBN 0-387-
94777-9, 2001, pp.227–244.

[6] R.D. Silverman, Massively distributed computing
and factoring large integers, Communications of the
ACM, Volume 34 No. 11, pp. 242-299.

[7] H.W. Lenstra Jr, Factoring integers with elliptic
curves, Annals of Mathematics. 1987, pp. 649-673.

[8] P.W. Shor, Algorithms for quantum computation:
Discrete logarithms and factoring, 35th Annual
IEEE Symposium on the Foundations of
Computer Science (1994), pp. 124-134.

[9] M.J. Wiener, Cryptanalysis of Short RSA Secret
Exponents, IEEE Transactions on Information
Theory, Volume 36, No. 3, 1990, pp. 553-558.

http://en.wikipedia.org/wiki/Paul_Kocher
http://en.wikipedia.org/wiki/2003
http://en.wikipedia.org/wiki/Dan_Boneh
http://en.wikipedia.org/w/index.php?title=David_Brumley&action=edit
http://en.wikipedia.org/wiki/Secure_Socket_Layer
http://en.wikipedia.org/wiki/Chinese_remainder_theorem
http://en.wikipedia.org/wiki/Branch_predictor
http://en.wikipedia.org/wiki/Simultaneous_multithreading
http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Adi_Shamir
http://en.wikipedia.org/wiki/Leonard_Adleman
http://en.wikipedia.org/wiki/Richard_Crandall
http://en.wikipedia.org/wiki/Carl_Pomerance
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0387947779
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0387947779

[10] D. Boneh, and G. Durfee, Cryptanalysis of RSA
with private key d less than N0.292. IEEE
Transactions on Information Theory IT. Volume
46. No. pp.

[11] J. Hastad, Solving simultaneous modular equations
of low degree. SIAM Journal of Computing,
Volume 17, No. 2, 1988, pp. 336–341.

[12] D. Coppersmith, Small solutions to polynomial
equations, and low exponent RSA vulnerabilities.
Journal of Cryptography, Volume 10, No. 4,
1997, pp. 233–260.

[13] D. Bleichenbacher, Chosen Ciphertext Attacks
Against Protocols Based on the RSA Encryption
Standard PKCS #1, Cryptology 1998, pp. 1–12.

[14] G. Simmons and M. Norris, Preliminary comments
on the MIT public-key, Cryptologia, Volume 1,
No. 4, 1977, pp. 406-414

[15] P.C. Kocher, Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems,
Online, Available: http://www.cryptography.com/
resources/ whitepapers/TimingAttacks.pdf.

[16] Boneh and Brumley, Remote Timing Attacks are
Practical, Online, Available: http://crypto.
stanford.edu/~dabo/papers/ssl-timing.pdf.

[17] O. Aciicmez, C. K. Koc and J-P Seifert, On the
Power of Simple Branch Prediction Analysis,
Cryptology, ePrint Archive, Report 2006/351

[18] Juniper Networks Multiple Vendor SSH RSA
Signature Forging Vulnerability. Online, Available:
http://www.juniper.net/security/auto/vulnerabilities/
vuln8094.html

http://en.wikipedia.org/wiki/Dan_Boneh
http://en.wikipedia.org/w/index.php?title=David_Brumley&action=edit

	Branch Prediction Analysis (BPA) attacks. Many processors use a Branch predictor to determine whether a conditional branch in the instruction flow of a program is likely to be taken or not. Usually these processors also implement Simultaneous multithreading (SMT). Branch Prediction Analysis attacks use a spy process running in parallel on the same processor as a process executing an RSA algorithm to discover the private key. Simple Branch Prediction Analysis (SBPA) claims to improve BPA in a non-statistical way. In [17], the authors of SBPA claim to have discovered 508 out of 512 bits of an RSA key in a single signing operation. Their attack was against an OpenSSL RSA implementation. They conclude that memory protection, sandboxing and virtualization, fail to prevent such “side channel” attacks and that these attacks are much more dangerous than “pure” timing attacks.

