

Algorithms for Executing and Visualizing
the Basic Relational Operations

for Purposes of a Virtual Laboratory

Elitsa ARSOVA, Silyan ARSOV, Angel SMRIKAROV
Dept. of Computer Systems and Technologies, University of Rousse

Rousse, 7017, Bulgaria

ABSTRACT

Studying a “Databases” course includes understanding of
complex notions and methods. Students’ commonly expressed
difficulties in the subject suggest that traditional approaches are
not appropriate for some learners. In this paper, we present
developed algorithms for execution of some operations on
relations: projection, selection, union, difference, Cartesian
product, intersection and natural join. We also report and explain
the evaluation of algorithms’ complexity. Finally, we mention
program modules, performing the operations above, which are
implemented as part of a developing Virtual Laboratory (VL).

Key words: Virtual Laboratory; Relational Operations;
Algorithms; Algorithms’ Complexity; Databases.

1. INTRODUCTION

Some students have difficulties learning a “Databases” course
especially when they have to understand theoretical notions and
data models. Such a notion is the algebraic notation, called
relational algebra, where queries are expressed by applying
specialized operators to relations. The relationship between
operations on relations and SQL queries is hard to understand,
because the realization of the queries on logical level is an
official secret. Algorithms for execution of the family of
operations on relations are not available either. This is the reason
for proposing algorithms based on the definitions of respective
operations on relations.

The idea is to design and implement the algorithms in an
educational computer-tool that will be a part of the VL on
“Databases” course. The algorithms are developed specially for
simulating the execution of relational operations on logical level
for educational purposes. They are represented as block schemas
and do not have an aim to show the implementation of a real
database management system (DBMS).

During the past years Virtual Learning Environments (VLE)
have rapidly influenced the educational process as they are
considered to substitute traditional methods of learning. At
present, there is a trend to interchange and combine full-time
with distance form of study [11]. This tendency seems to be a
substantial component of the educational policy of many leading
universities. Some of the Bulgarian universities that
implemented e-learning systems for enhanced learning are the
University of Rousse – the eLSe system [12], the University of
Sofia – the ARCADE system [9], the University of Plovdiv –
PeU [6], the Technical University-Sofia[4], etc.. The researches
in the field of VLs at the Department of “Computer Systems and
Technologies” in the University of Rousse proceed with
implementation of VL on the courses “Computer Organizations”

[1] and “Analysis and Synthesis of Logical Schemes”, named
Digital Logic Design Virtual Laboratory (DLDVL) [13].
Interactive models of different Central Processing Unit (CPU)
blocks are created within the framework of the VL on
“Computer Organization”. Tools for logical schemes design and
test system are developed in DLDVL.

Learning a “Databases” course includes aspects from conceptual
and theoretical knowledge to practical development and
implementation skills [2]. The choice of topics for several
courses and practical seminars on database systems is discussed
in [7], where the idea of the environment is to achieve a balance
between theory and practice. An interactive educational
multimedia system based on the virtual apprenticeship model for
the knowledge- and skills-oriented Web-based education of
students on “Databases” course is presented in [2]. A main
aspect of the system is combining knowledge, learning and skills
training in an integrated environment and the authors show that
tool-mediated independent learning and training in an authentic
setting is an alternative to the traditional classroom-based
approaches. According to [10] database representation is an
important factor in database use and the interaction between a
database structure representation and a query language may
dramatically affect database learning and use.

2. THEORETICAL BASIS

Definition of relational algebra: Let ܷ is a set of attributes,
called universium, ܦ- a set of domains and ݀݉݋- an entire
function of ܷ in ܦ. Let further ܴ ൌ ሼܴଵ, ܴଶ, . . , ܴ௡ሽ is a set of
different schemes of the entities, ݀ ൌ ሼݎଵ, ,ଶݎ . . , ௡ሽ is a set of allݎ
relations, where ݎ௜ is a relation with scheme ܴ௜, 1 ൑ ݅ ൒ ݊. Θ is a
set of binary relations over the ܦ domains, containing the
arithmetic comparative oper main. ations on every do

Relational algebra over ܷ, ,ܦ ,݉݋݀ ܴ, ݀, Θ is called seven
positioned tuple Ը ൌ ሺܷ, ,ܦ ,݉݋݀ ܴ, ݀, Θ, ܱሻ, where ܱ is a set of
the operators for projectio , selection, union, difference,
Cartesian product, intersectio join, th uses relation Θ.

n
n and at

The algebra expression over Ը is called every expression that is
built correctly from relations related to ݀ and from constant
relations with schemes ܷ using the operators from ܱ [3].

3. ALGORITHMS FOR EXECUTION OF THE

OPERATIONS ON RELATIONS

Projection. The idea behind this operation is that we take a
relation ܴ, remove some of the components (attributes) and/or
rearrange some of the remaining components. If ܴ is a relation

Fig. 2. An algorithm for execution of the relational operation
selection

of arity ݇, we let ߨ௜భ,௜మ,..,௜೘ሺܴሻ, where ௝݅’s are distinct integers in
the range 1 to ݇, denote the projection of ܴ onto components
݅ଵ, ݅ଶ, . . , ݅௠, that is, the set of ݉ – tuples ܽଵ, ܽଶ, . . , ܽ௠ such that
there are some ݇ – tuples ܾଵ, ܾଶ, . . , ܾ௞ in ܴ for which ܽ௜ ൌ ܾ௜ೕ,
for ݆ ൌ 1,2, . . , ݉ [8]. The algorithm of operation projection is
presented on fi 1.

Fig. 1. An algorithm for execution of the relational

operation projection

g.

Selection. Let ܨ be a formula involving [8]:

1) Operands that are constants or component
n nent ݅ is represented by $݅, umbers; compo

arithmetic c
,

2) The omparison operators
 ൏, ൌ, ൐, ൑ ്, ൒ , and
The logical opera rs
ר ሺܽ݊݀ሻ,ש ሺݎ݋ሻ, ܽ ݀ , ሺ݊ݐ݋ሻ.

3) to
݊ ൓

Then ܨߪሺܴሻ is a set of tuples ߤ in ܴ such that when, for any ݅,
we substitute the ݅௧௛ component of ߤ for all occurrences of $݅ in
formula ܨ, the formula ܨ becomes true. The algorithm of
operation selection is presented on fig. 2.

Fig. 3. An algorithm for execution of the relational operation
difference

Fig. 4. An algorithm for execution of the relational operation
union

Difference. The difference [5] of relations ܴ ܽ݊݀ ܵ, denoted
ܴ െ ܵ, is the set of tuples in ܴ but not in ܵ (fig. 3).

Union. The union [5] of relations ܴ ܽ݊݀ ܵ, denoted ܴ ׫ ܵ, is the
set of tuples that are in ܴ ݎ݋ ܵ (fig. 4). or both

Cartesian product. Let ܴ ܽ݊݀ ܵ be relations of arity
݇ଵ ܽ݊݀ ݇ଶ, respectively. Then ܴ ൈ ܵ, the Cartesian product of
ܴ ܽ݊݀ ܵ, is the set of all possible ሺ݇ଵ ൅ ݇ଶሻ – tuples whose first
݇ଵ components from a tuple in ܴ and whose last ݇ଶ components
from a tuple in ܵ [8]. The algorithm of operation Cartesian
product is presented on fig. 5.

Fig. 5. An algorithm for execution of the relational operation
Cartesian product

Intersection. The intersection of relations ܴ ܽ݊݀ ܵ, denoted
ܴ ת ܵ, is the set of elements that are in both relations [5]. Since
intersection can be written in terms of set-difference, it is not a
fundamental operation. The algorithm is presented on fig. 6.

For the execution of operations union, difference and
intersection the relations ܴ ܽ݊݀ ܵ must have schemas with
identical sets of attributes, and types (domains) for each attribute
must be the same in ܴ ܽ݊݀ ܵ.

Fig. 6. An algorithm for execution of the relational operation
intersection

Natural join. The natural join, written ܴ ڇ ܵ, is applicable only
when both ܴ ܽ݊݀ ܵ columns that are named by attributes.
To compute ܴ ڇ ܵ

 have
 we:

1. Compute ܴ ൈ ܵ;
2. For each attribute ܣ that names both a column in ܴ and

a column in ܵ select from ܴ ൈ ܵ those tuples whose values agree
in the columns for ܴ. .ܵ and ܣ .ܴ where ,ܣ is the name of the ܣ
column of ܴ ൈ ܵ corresponding to the column ܣ of ܴ, and ܵ. ܣ

d fined analogously; is e
3. For each attribute ܣ above, project out the column

 ܵ. and call the rem ܣ lumn, ܴ. aining co .ܣ simply ,ܣ

en, if , ,ଶܣ . . , ௞ are all thܣ te names used
݊ ,

Formally th ଵܣ e attribu
for both ܴ ܽ ݀ ܵ we have
ܴ ڇ ܵ ൌ ோ.஺ೖୀௌ.஺ೖሺܴר…רோ.஺భୀௌ.஺భߪ௜భ,௜మ,..,௜೘ሺߨ ൈ ܵሻሻ, where
݅ଵ, ݅ଶ, … , ݅௠ is the list of all components of ܴ ൈ ܵ, in order,
except the components ܵ. ,ଵܣ ܵ. ,ଶܣ … , ܵ. ௞ [8]. The algorithmܣ
of operation natural join is presented on fig. 7.

4. IMPLEMENTATION OF THE ALGORITHMS

To show that the developed algorithms in fact work at a physical
level, we implement them in a web-based programming system.
We disregard a full storage manager with a buffer scheme to
facilitate the students’ understanding on relational theory. The
system is experimental and its aim is to visualize the execution
of basic operations on relations at a logical level (i.e. how rows
and columns are excluded from the output).

Fig. 7. An algorithm for execution of the relational operation
natural join

Fig. 8. A user interface for execution of
the relational operation difference and its definition

The idea is to demonstrate the execution of the respective
relational operations. The demonstration presents the result from
the execution of chosen operations with indicated operands.

A user interface for execution of the relational operation
difference is presented on fig. 8. The given page enables users to
select tables (relations), among which the operation will be
performed. After selecting a table, all of its attributes are
displayed and some of them must be chosen. Depending on the
operation, we choose one or several attributes.

Furthermore, the system has a possibility to display learning
materials, as definitions and algorithms, in additional windows.
The link “Definition of the operation difference” opens a PDF
file in a new browser window (fig. 8). By this means, the user
could examine the theoretical part and choose simultaneously
the attributes that could participate in a given query.

Fig. 9. A user interface for execution of
the relational operation difference and its algorithm

Fig. 10. A user interface for execution of
the relational operation natural join

Likewise, the link “Algorithm of the operation difference” opens
in a new browser window and visualizes the sequence of steps
for execution of the operation (fig. 9).

The user interface for execution of the operation natural join is
distinguished from others (fig. 10). Its form consists of an
additional field which indicates the attributes that are common
for the two tables i.e. specifying primary and foreign keys of the
relations.

5. ESTIMATION OF ALGORITHMS’ COMPLEXITY

Projection. Let have a sequence of attribute values
:ܣ ܽଵ, ܽଶ, … , ܽ௡.
The projection can be executed by reading ܰ times
consecutively the values of the chosen attributes A for the
projection, where ܰ is the number of values of ܣ, and
transferring to the new array that consists of the result from
operation projection.

esents the proj
௦ ൌ ܱሺܰሻ, (1)

The Eq ection algorithm complexity: . (1) pr
௘ܶ௫௘௖௨௧௜௢௡

where ௘ܶ௫௘௖௨௧௜௢௡ is the number of executions of the “read/write”
operations.

Selection. Let have a sequence of attribute values
:ܣ ܽଵ, ܽଶ, … , ܽ௡.

Algorithm for binary search in ordered sequence of
data values.
This algorithm is used in cases when the sequence of attributes
values ܽଵ, ܽଶ, … , ܽ௡ is ordered. We should find whether an
element ݔ is in this sequence. The idea of the binary search is the
following. An element ݔ is compared with an element in the
middle of the sequence - ܽ௠௜ௗௗ௟௘. The search is continuing in the
same way on the left half of array if ݔ ൏ ܽ௠௜ௗௗ௟௘. The search is
continuing on the right half if ݔ ൐ ܽ௠௜ௗௗ௟௘ and the search will
stop when ݔ ൌ ܽ௠௜ௗௗ௟௘.

The esti ation of the algo mplexity (Eq. (e rd to
operat

m rithm co 2)) in r ga
n selection is the following:

௥௜௦௢௡௦ ൌ 1; ୫ܶୟ୶ _௖௢௠௣௔௥௜௦௢௡௦ ൌ logଶ ܰ, (2)
io

୫ܶ୧୬ _௖௢௠௣௔
where ௖ܶ௢௠௣௔௥௜௦௢௡௦ is the number of comparisons.

Algorithm for sequential search in not ordered
sequence of data values.
The estimation of the sequential search algorithm mplexity
(Eq. (3) l g:

 co
regarding to operation selection is the fo lowin

௜௦௢௡௦ ൌ 1; ୫ܶୟ୶ _௖௢௠௣௔௥௜௦௢௡௦ ൌ ܰ, (3)
)

୫ܶ୧୬ _௖௢௠௣௔௥
where ௖ܶ௢௠௣௔௥௜௦௢௡௦ is the number of comparisons.

Union. Let have a sequence of attribut values: ܣ: ܽଵ, ܽଶ, … , ܽ௡
and ܤ: ܾଵ, ܾଶ, … , ܾ௠

es

.
The union can be executed by reading ܰ times consecutively the
values of attribute ܣ and transfer them into a new array that
consists of the result from operation union. Next, we read ܯ
times attribute ܤ values, compare values of ܤ with values of ܣ
to avoid repetitions and again transfer them into the already
existing array consisting of the result from operation union.

The next Eq. (4) algorithm
comple

presents the estimation of union
ity:

௦ ൌ ܱሺܰ ൅ ܰ כ ሻܯ ൌ ܱሺܰሺܯ ൅ 1ሻሻ, (4)
x

௘ܶ௫௘௖௨௧௜௢௡
where ௘ܶ௫௘௖௨௧௜௢௡ is the number of executions of the “read/write”
and comparison operations.

Difference. Let have a sequence of attributes values:
:ܣ ܽଵ, ܽଶ, … , ܽ௡ and ܤ: ܾଵ, ܾ … , ܾ௠. ଶ,
The difference operation can be executed by reading ܰ times
consecutively the attribute ܣ values and all of its values are
compared ܯ times with the values of attribute ܤ. If a given
value of ܣ is not equal to a value of ܤ, the value of ܣ is
transferred into a new array consisting of the result of operation
difference.

The estimation of hm complexity (Eq. (5)) for
execut is the following:

 the algorit
n of operation difference

௡௦ ൌ ܱሺܰ כ ሻ, (5)ܯ
io

௘ܶ௫௘௖௨௧௜௢
where ௘ܶ௫௘௖௨௧௜௢௡ is the number of executions of the “read/write”
and comparison operations.

Cartesian product. Let have a sequence of attributes alues:
:ܣ ܽଵ, ܽଶ, … , ܽ௡ and ܤ: ܾଵ, ଶ, … , ܾ௠.

 v
ܾ

The Cartesian product can be executed by reading ܰ times
consecutively the attribute ܣ values and by concatenating all of
its values with all values of attribute ܤ. The second operation is
executed ܯ times. The outcome is a new array containing the
result of operation Cartesian product.

The nex Eq. (6) presents the estimation of Cartesian product
algorit i

t
 complex ty:

௡௦ ൌ ܱሺܰ כ ሻ, (6)ܯ
hm

௘ܶ௫௘௖௨௧௜௢
where ௘ܶ௫௘௖௨௧௜௢௡ is the number of execution of the “read/write”
operations.

Intersection. Let have a sequence of attributes values:
:ܣ ܽଵ, ܽଶ, … , ܽ௡ and ܤ: ܾଵ, ܾ … , ܾ௠. ଶ,
The intersection operation can be executed by reading ܰ times
consecutively the attribute ܣ values and all of its values are
compared ܯ times with values of attribute ܤ. If a given value of
 is transferred into a ܣ the value of ,ܤ is equal to a value of ܣ
new array consisting of the result of operation intersection.

The estimation of complexity for execution of
operati wing (Eq. (7)):

the algorithm
 intersection is the follo

௡௦ ൌ ܱሺܰ כ ሻ, (7)ܯ
on

௘ܶ௫௘௖௨௧௜௢
where ௘ܶ௫௘௖௨௧௜௢௡ is the number of execution of the “read/write”
and comparison operations.

Natural join. Let have a sequence of attributes values:
:ܣ ܽଵ, ܽଶ, … , ܽ௡ and ܤ: ܾଵ, ܾଶ, … , ܾ௠.
The natural join operation can be executed as a sequence of two
operatio s: Cartesian p election. The estimation of
the Car algorithm complexity is

n roduct and s
tesian product

௘ܶ௫௘௖௨௧௜௢௡௦ሺ஼௉ሻ ൌ ܱሺܰ כ .ሻܯ

The selection operation is executed after transferring the result
from the Cartesian product operation execution to a new array
consisting of ܰ כ values. The estimation of the sequential ܯ
search algorithm com ard to operation selection is
the follo

plexity in reg
wing:
௘ܶ௫௘௖௨௧௜௢௡௦ሺௌሻ ൌ ܱሺܰ כ ,ሻܯ

i.e. the number of array rows that are the result from Cartesian
product operation.

The sum of the estimations of Cartesian product and selection
algorithm complexity s the esti n of natural join
algorith

s form matio
 complexity m (Eq. (8)).
௘ܶ௫௘௖௨௧௜௢௡ሺே௃ሻ ൌ ௘ܶ௫௘௖௨௧௜௢௡ሺ஼௉ሻ ൅ ௘ܶ௫௘௖௨௧௜௢௡ሺௌሻ

௘ܶ௫௘௖௨௧௜௢௡ሺே௃ሻ ൌ ܱሺ ܰ כ ܯ ൅ ܰ כ ሻܯ ൌ 2 כ ܱሺܰ כ (8)(ܯ

6. CONCLUSIONS AND FUTURE WORK

Algorithms based on the definitions of the operations projection,
selection, union, difference, Cartesian product, intersection and
natural join are developed with a purpose to explain and
visualize the operations on relations explicitly. Learner
knowledge is elaborated by presenting complex definitions as
algorithms or a sequence of simple operations. The algorithms
are used for the implementation of program modules for the
purposes of a VL on “Databases” course. Through the
implementation of the program modules based on algorithms,
developed by the authors, has proved their correctness. Results
from the testing of the algorithms in the VL with a typical group
of students will be published in a separate paper.

7. REFERENCES

[1] A. Vasileva, A. Smrikarov, T. Hristov, “A Conceptual

Model of a Virtual Laboratory on “Computer
Organization””, Proceedings of CompSysTech’02, Sofia,
Bulgaria, 20-21 June, 2002.

[2] C. Pahl , R. Barrett , Claire Kenny, “Supporting Active
Database Learning and Training through Interactive
Multimedia”, Proceedings of the 9th Annual SIGCSE
Conference on Innovation and Technology in Computer
Science Education, Leeds, United Kingdom, June 28-30,
2004.

[3] D. Maier, The Theory of Relational Databases,
Rockville, Md.: Computer Science Press, 1983.

[4] E. Shoikova, V. Denishev, I. Pandiev, “Development of an
eLearning Architecture Based on Microsoft Class Server”,
International Conference “New Technologies in Higher
Education and Training”, Sofia, 6-17 May, 2003.

[5] G. Molina, J. Ullman, J. Widom, Database Systems: The
Complete Book, Prentice Hall, New Jersey, USA, 2002.

[6] G. Totkov, R. Doneva, “Computerized environment for
integrated maintenance of distance education course
modules”, Proceedings of the 1998 EDEN Conference,
Vol. 2, Italy, 1998.

[7] J. Peneva, G. Tuparov, “An Approach of Teaching Data
Management”, Proceedings of CompSysTech’05, Varna,
Bulgaria, 16-17 June, 2005.

[8] J. Ullman, Principles of database and knowledge-base
systems, Vol. 1 Classical database systems, Computer
Science Press, 1988.

[9] K. Stefanov, S. Stoyanov, R. Nikolov, “Design Issues of a
Distance Learning Course on Business on the Internet”,
JCAL (Journal of Computer Assisted Learning), Vol.
14, No. 2, 1998.

[10] R. Leitheiser, S. March, “The Influence of Database
Structure Representation on Database System Learning and
Use”, Journal of Management Information Systems,
Vol. 12, Issue 4, March 1996, p.187 – 213.

[11] S. Ivanov, J. Peneva, “Distance Learning Courses in
Computer Science – Initiation and Design”, Proceedings of
CompSysTech’07, Rousse, Bulgaria, 14-15 June, 2007.

[12] T. Hristov, S. Smrikarova, A. Vasileva, A. Smrikarov, “An
Approach to Development of an e-Learning Software
Platform”, Proceedings of CompSysTech’02, Sofia,
Bulgaria, 2002.

[13] V. Mateev, S. Todorova, A. Smrikarov, “Test Construction
and Distribution in Digital Logic Design Virtual
Laboratory”, Proceedings of e-Learning Conference’07
Computer Science Education, Istanbul, Turkey, 27-28
August, 2007.

