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ABSTRACT

This paper develops a design procedure of a MIMO

PID (Multi-Input-Multi-Output Proportional–Integral–

Derivative) control system for controlling level and

temperature in a water tank plant. Such a plant can

be described by interconnected nonlinear differential

equations, which could complicate the analytical aspects

of modeling and controller design. However, a linearized

technic was applied to obtain a MIMO linear description,

which permit to configure a control system by combining

a linear MIMO PID controller acting on the water tank

plant. Experimental results demonstrate that the designed

controller is able to stabilize tank level and temperature

simultaneously. The control software was written in

LabVIEW code.

Keywords: Water tank plant, nonlinear modeling,

MIMO PID controller, control software, LabVIEW code.

1 INTRODUCTION

Water tank system are being used to illustrate both
traditional and advanced multivariable control strate-
gies. Quantitative Feedback Theory is employed in [1]
to design a robust controller to regulate the liquid level
in two coupled glass tanks. A multivariable laboratory
process of four interconnected water tanks is considered
in [2] for modeling and robust control of the tank level.
In [2], flow and temperature of a water tank system are
controlled employing a backstepping method, whereas
a four tank system laboratory experiment is designed
in [4] to illustrate the effects that time-varying dynam-
ics can have on controllability. Also, predictive fuzzy
modeling technique is employed in [5] for analysis of a
closed water tank, and an Internal Mode Contro–based
robust tunable controller design technique is applied to
a water tank control system in [6].

Regulation of the level of liquid in a tank is a com-
mon industrial process control problem. The modeling
of the dynamics of the liquid level and flow rate relies
on the approximate linearity at the equilibrium point.
A linear fractional transformation framework is set up

for robust control design, in which the nonlinearity is
considered as model uncertainty. An IMC–based ro-
bust tunable controller design technique is applied to a
water tank control system. As the design provides an
on-line tuning method, the controller can be adjusted
when the operating point changes. Experimental re-
sults show the advantages of this design.

The study developed in this paper considers a water
tank system described by interconnected nonlinear dif-
ferential equations. The objective control consist in
stabilize level and temperature of the water tank si-
multaneously employing a MIMO PID controller.

2 MODELING THE PLANT

Fig. 1 depicts the water tank plant studied here. In
such a plant, cold water is sent to the tank, heated elec-
trically, and sent out. The plant is a MIMO type be-
cause possesses two control inputs: the inflow rate and
the heater supply, and two controlled outputs: water
level and the temperature in the tank. Table 2 de-
scribes all variables and valued parameters of the plant
into consideration.
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Fig. 1: Water tank plant.



Table 1: Variables and valued parameters of the water
tank plant.

Symbol Description and value
dS tank diameter = 0.25 m
S tank cross sectional area = 0.041 m2

H water level in steady state = 0.19 m
H water level
h residual h = H − H
Qi tank inflow rate
Qi inflow rate in steady state = 0.16 m3/h
qi residual qi = Qi − Qi

Qo tank outflow rate
qo residual qo = Qo − Qo

Rh hydraulic resistance Rh = H

Q
= 2700 s

m2

g gravitational constant = 9.81 m/s2

ρ water density =1000 kg/m3

do output orifice diameter = 0.0127 m
Ao orifice cross sectional area = 0.000126 m2

Av vena cross sectional area = m2

Cc area correction between Ao and Av

Cv frictional losses correction = 0.8 to 0.99
Cd discharge coefficient Cd = CvCc = 0.5
a discharge factor a = 0.00028 m2.5

s

Cp water specific heat = 4186.8 J
kg K

Rt termal resistance Rt = 1

CpρQ
= 0.0054 K

W

Θa atmosphere temperature = 27.0 oC
Θo steady state tank temperature = 31 oC
Θo outflow rate temperature
θo residual θo = Θo − Θo

Φi heater supplied
Φi steady state heater supplied = 1540 W
ΦT water heat in the tank
Φo outflow rate heat
Φs released heat Φs = Θo−Θa

Rt

Φc inflow rate heat

The rate of water outflow is expressed by

S
dH

dt
= SḢ = Qi − Qo (1)

where the flow rate through the orifice is [7]

Qo = CvCcAo

√
2gh = CdAo

√
h = a

√
h (2)

where a = CdAo

√
2g is the discharge factor, Cc is the

area correction between Ao and Av (see figure 1)

Av = CcAo

and Cv is a coefficient that considers frictional losses
through the orifice. The product Cd = CvCc, the dis-
charge coefficient, can be determined experimentally
for a given orifice. Values of Cc vary between 0.6 and

1.0, while Cv can take values between 0.8 and 0.99.
Therefore

0.48 ≤ Cd ≤ 0.99 (3)

We assume a value Cd =0.5. From (1), we obtain the
first state equation

Ḣ = − a

S

√
H +

1
S

Qi (4)

On the other hand, assuming that the water tempera-
ture in the tank is uniform, the heat balance is formu-
lated as [3]

ΦT = −Φo − Φs + Φc + Φi (5)

where ΦT is the water heat in the tank, Φo is the out-
flow heat, Φs is the heat released to the air, Φc is the
inflow heat, and Φi is the heater supplied. Also

ΦT = SρCp
Q2

o

a2

dΘo

dt
= SρCpH

dΘo

dt
(6)

Φo = CpρΘoQo = CpρaΘo

√
H (7)

Φs =
Θo − Θa

Rt
(8)

Φc = CpρΘiQi (9)

The second state equation is obtained by solving for
dΘo

dt = Θ̇o the equation (5)

Θ̇o = − a

S

Θo√
H

− Θo − Θa

SρCpRtH
+

Θi

A

Qi

H
+

1
SρCp

Φi

H
(10)

Linearizing equations (4) and (4) for the operation
point (H,Θo) using Jacobian matrices leads to

ẋ = Ax + Bu

y = Cx =
[

1 0
0 1

]
x (11)

A =

[
∂f1
∂H

∂f1
∂Θ0

∂f2
∂H

∂f2
∂Θ0

]
B =

[
∂f1
∂Qi

∂f1
∂Φi

∂f2
∂Qi

∂f2
∂Φi

]

where f1 = Ḣ and f2 = Φ̇o are equations (4) and (10)
respectively, and the residual state and control vectors
x = [h θo]T and u = [qi Φo]T are defined by[

h
θo

]
=

[
H − H
Θ0 − Θ0

] [
qi

Φo

]
=

[
Qi − Qi

Φ0 − Φ0

]
(12)

Performing partial derivatives on (11) produces

∂f1

∂H
= − a

2S
√

H

∂f1

∂Θo
= 0

∂f2

∂H
=

a

2S

Θo√
H

3
+

Θo − θa

SρCpRtH
2 − θiQi

SH
2 − Φi

SρCpH
2

∂f2

∂Θo
= − a

S
√

H
− 1

SρCpRtH

∂f1

∂Qi
=

1
S

∂f1

∂Φi
= 0

∂f2

∂Qi
=

θi

SH

∂f2

∂Φi
=

1
SρCpH

(13)



3 MIMO PID CONTROLLER DESIGN

Figure 2 shows the block diagram of a MIMO PID con-
trol system where Gs(s) is the MIMO PID controller,
R is the vector of desired outputs, Y = Gp(s)U (s is
the Laplace variable), and U = Gs(s)[R − Y]. There-
fore

Gc(s) = (I + Gp(s)Gs(s))−1Gp(s)Gs(s)

=
[

Gc11(s) Gc12(s)
Gc21(s) Gc22(s)

]
(14)

Gs(s) = Gp(s)−1Gc(s)(I − Gc(s))−1

=
[

Gs11(s) Gs12(s)
Gs21(s) Gs22(s)

]
(15)

R Y
G Gs p(s) (s)

E U

CONTROLLER PLANT

Fig. 2: Block diagram of a MIMO PID control system.

The MIMO PID control system studied here must sat-
isfy the following performance specifications [8]

1) No interaction between reference inputs R (the de-
sired outputs) and outputs Y.

2) Static accuracy.

3) Stability

3) Insensitivity to disturbances

No Interaction
To obtain complete decoupling between vectors R and
Y, matrix Gc (equation (14)) must be diagonal, which
means transfer functions Gc12(s) and Gc21(s) are null.
A necessary and sufficient condition for noninterac-
tion is that the open–loop transfer matrix G(s) =
Gp(s)Gs(s) also be diagonal. This fact is easy to prove.
Using (14)

G(s) = Gc(s)[I − Gc(s)]−1

Since Gc(s) is diagonal, then matrix [I−Gc(s)] and its
inverse are also diagonal

[I − Gc(s)]−1 =

[
1

1−Gc11(s)
0

0 1
1−Gc22(s)

]
(16)

Therefore

G(s) =

[
Gc11(s)

1−Gc11(s)
0

0 Gc22(s)
1−Gc22(s)

]
(17)

Static Accuracy
To achieve static accuracy, the vector error

E = R − Y = [I − Gc(s)]R

for constant step–type R should approach to zero

lim
t→∞E = 0

Applying the final–value theorem, a necessary condi-
tion for zero static accuracy is

lim
s→0

Gc(s) = I (18)

On using condition (18) into (14) produces

lim
s→0

[I + G(s)] = lim
s→0

G(s) (19)

which implies that [I + G(0)] = G(0), meaning that
each diagonal element of G should approach to ∞ for
s = 0. Therefore, each diagonal element of G must
contain at least one integrator.

Stability
To preserve stability of the designed control system, all
eigenvalues of its characteristic equation det[I+G(s)] =
0 must be located on the left side of the s plane [8].
Since

I + G(s) =
[

1 + G11(s) 0
0 1 + G22(s)

]
(20)

then

det[I + G(s)] = (1 + G11(s))(1 + G22(s)) = 0

implying that (1 + G11(s) = 0) and (1 + G22(s)) = 0.

Insensitivity to disturbances
By setting R = 0 and introducing a vector disturbance
Z in figure 2, this turns into the block diagram showed
in figure (3) which can be used to compute the effect
of disturbances in output vector Y as follows

Y = (I + GpGs)−1GpZ = (I + G(s))−1GpZ (21)

Y
Gp(s)

PLANT

(s)sG

Z

R = 0

CONTROLLER

Fig. 3: Block diagram for computing the effect of the dis-
turbances.



4 MIMO CONTROLLER CALCULATION

The transfer matrix Gp(s) of the linear plant model
given by (11) can be calculated from

Gp(s) = C(sI − A)−1B (22)

Gp(s) =

⎡
⎢⎣

Kp11
Tp11s+1 0

Ps+Q
(Tp11s+1)(Tp22s+1)

Kp22
Tp22s+1

⎤
⎥⎦

where s is the Laplace variable, I is the identity matrix,
and Kp11, Kp22, P and Q are constants.

To determine the control matrix Gs(s) given by (15),
it is required to specify the diagonal form of the closed–
loop transfer matrix Gc(s). We may attempt the fol-
lowing choice

Gc(s) =

[
1

Tnivs+1 0
0 1

Ttemps+1

]
(23)

due to the following reasons

1) Gc(s) is diagonal, satisfying the non interaction
requirement.

2) Gc(0) = I, fulfilling the static accuracy require-
ment stipulated in (18).

3) Knowing that Y = GcR, then the two channels of
the system have the form

Y1 =
1

Tnivs + 1
R1 Y2 =

1
Ttemps + 1

R2

As R is assuming to be a step–type vector, the
level channel Y 1 and the temperature channel Y2

will reach exponentially to their correspondence
references R1 and R2. Observe that Tniv and Ttemp

are the time constants of the channels.

4) Using (17), G(s) = Gp(s)Gs(s) is found to be

G(s) =
[ Tniv

s 0
0 Ttemp

s

]
(24)

By application of the final value theorem in (21),
assuming that Z is a step–type disturbance, it is
easy to demonstrate that

lim
s→0

{[I + G(s)]−1GpZ} = 0

This result satisfies the requirement of insensitiv-
ity to disturbances.

The control matrix Gs(s) is obtained using (15):

Gs(s) =
[

Gs11(s) 0
Gs21(s) Gs22(s)

]
(25)

=

⎡
⎣ −Ks11

(
1 + 1

TI11 s )
)

0

−Ks21

(
1 + 1

TI211 s )
)

−Ks22

(
1 + 1

TI221 s )
)

⎤
⎦

Observe that Gs(s) possess three PI controllers, one
of them negative. Figura 4 the block diagram of the
MIMO PID control system for controlling the water
tank plant.

p11G

p22G

p21G

s11G

s21G

Gs22
UE

E UR

R

11

222

1 1Y

Y2

Fig. 4: Block diagram of the MIMO PID control system.

5 HARDWARE AND SOFTWARE

Hardware
Fig.5 depicts the hardware configuration of the water
tank control system, which includes level measurement
using a Valcom pressure sensor (range: [0, 1.25] m) and
a Safir type P transmitter with digital indicator set to
[0, 10] V, temperature measurement using a Pt 100
RTD sensor (range: [0 oC/4 mA, 100 oC/20 mA]) and
a Safir type T transmitter with digital indicator which
converts [4, 20] mA to [0, 10] V, a Sauter AVM104S
valve with electric drive (range: [0, 10 V]) to regulate
the inflow rate of water, a SPC1-35 power controller
with input set to [1, 5] V connected to an electric re-
sistance for water heating, a NI PCI 6229 data acqui-
sition card allocated in a Pentium PC, and the water
tank plant.
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Control Software
The MIMO PID control algorithm was written in Lab-
VIEW code (V 8.5) and executed in the CPU of the
PC. Such an algorithm process level and temperature
signals and generate two control signals, one for the
valve and another for the power controller. Actually,
the MIMO PID controller given by (25) requires three
PI control algorithms. The basic form of a PID control
algorithm is

u(t) = Kpe(t) +
Kp

Ti

∫ t

0

e(t)dτ + KpTd
de(t)
dt

= P (t) + I(t) + D(t)
e(t) = r(t) − y(t) (26)

where u(t), y(t), e(t), and r(t) are the control, output,
error and set–point signals, respectively. Also, Kp, Ti,
and Td represent the proporcional gain, the integral
time, and the derivative time, respectively. That ba-
sic PID algorithm has been modified as to improve its
performance.

To prevent drastic changes in the derivative term D(t)
due to abrupt changes in r(t), let us the derivative ac-
tion operate only on y(t) and not on r(t), that is

D(t) = −KpTd
dy(t)
dt

It is advisable to filter the pure derivative term dy(t)
dt

employing a first order filter to limit the high frequency
measurement noise amplification in y(t), that is

D(s) = − KpTd s

1 + Tf s
y(s) Tf =

Td

N
(27)

where Tf is a time constant and N is the bound of the
derivative gain (a value between 3 and 10).

The control software is written in the discrete–time do-
main. So we need a discrete form of the modified PID
controller. Being k = t

T the discrete time, where T is
the sampling time, P (t) takes the form

P (k) = KP e(k)

We can employ trapezoidal approximation for the in-
tegral term I(t)

I(k) =
Kp

Ti

k∑
i=1

T
[e(i) + e(i − 1)]

2
=

Kp

Ti

k−1∑
i=1

T
[e(i) + e(i − 1)]

2
+

Kp

Ti
T

[e(k) + e(k − 1)]
2

For the discrete time (k − 1) holds

I(k − 1) =
Kp

Ti

k−1∑
i=1

T
[e(i) + e(i − 1)]

2

Subtracting I(k− 1) from I(k) we obtain the recursive
form of I(k)

I(k) = I(k − 1) +
Kp T

2Ti
[e(k) + e(k − 1)] (28)

The derivative term given by (27) can be rewritten as

D(t) + Tf Ḋ(t) = −KpTd ẏ(t)

Performing backward approximation of the derivative
terms

Ḋ(t) � D(k) − D(k − 1)
T

ẏ(t)
y(k) − y(k − 1)

T

leads to

D(k) =
Td

NT + Td
{D(k − 1) − KpN [y(k) − y(k − 1)]}

(29)

The designed control signal u(k) is limited to be be-
tween umin and and umax before entering to the ac-
tuator: the PWM amplifier. It may happen that u(k)
reaches such limits. When this happens the feedback
loop is broken and the system runs as an open loop
because the actuator will remain at its limit indepen-
dently of the process output y(k). Meanwhile, the I(k)
term of the controller may become very large or, in
other words, it “winds up” because the error will be
continuously integrated. To avoid this integral windup
phenomena, it is recommended to turn off the integral
action as soon as the actuator saturates. One way to
turn off the integral term is to use a dead zone

v(k) = P (k) + D(k) + I(k)

u(k) =

⎧⎨
⎩

P (k) + KP

Ti
+ D(k), v(k) ≤ umin

v(k), umin ≤ v(k) ≤ umax

P (t) + KP

Ti
+ D(k), v(k) ≥ umax

On the other hand, when the controller conmutes from
manual to automatic operation, the control signal u(t)
may change (“bump”) from a value to another inde-
pendent of the value of the error signal e(t). To obtain
bumpless operation of the controller, the control algo-
rithm must be also executed in manual operation. Fig.
6 pictures a portion of the control software written in
LabVIEW code [9], [10].

6 EXPERIMENTAL RESULTS

Figure 7 depicts the controlled level and its correspond-
ing control action (the inflow rate), while figure 8 shows
the controlled temperature and its corresponding con-
trol action (the heat supplied). Constants and time
constants of the MIMO controller (see relation (25)
were set to Ks11 = 4, Ks21 = 4, Ks22 = 6, Ti11 = 100,
Ti21 = 100 and Ti22 = 100. Reference points level and



Fig. 6: Portion of the control software.

temperature were set to 19 cm and 31oC, respectively.
The sampling period used to execute the algorithm was
1 s. We observe that the designed MIMO control al-
gorithm is able to stabilize the controlled outputs with
sufficient speed.
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Fig. 7: Controlled tank level and its corresponding control
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7 CONCLUSIONS

In light of the experimental result, we may assure that
it is possible to find an interconnected MIMO linear
dynamic model of the water tank plant capable of cap-
turing significant features of the actual MIMO inter-
connected nonlinear plant. Such a model permit to
design and implement a MIMO PID linear controller,
capable of stabilizing the outputs of the plant (level
and temperature) in real–time operation.
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