
A New Three Dimensional Bivalent Hypercube
Description, Analysis, and Prospects for Research

Jeremy Horne
Avenida Moreras 131 
San Felipe, Baja California  C.P. 21850
mindsurgeon@hotmail.com

Keywords: 3-D Hypercube, Logic, Pattern Classification, Binary Systems, Innate Order

Abstract
A three dimensional hypercube representing all of the 4,096 dyadic computations in a standard 
bivalent system has been created.  It has been constructed from the 16 functions arrayed in a table of 
functional completeness that can compute a dyadic relationship.  Each component of the dyad is an 
operator as well as a function, such as “implication” being a result, as well as an operation.  Every 
function in the hypercube has been color keyed to enhance the display of emerging patterns.  At the 
minimum, the hypercube is a limited “multiplication table” or table of dyadic computations and values 
that shorten the time to do operations that normally would take longer using conventional truth table 
methods.   It also can serve as a theorem prover and creator.  With the hypercube comes a complete 
system without the need for axioms.  The main significance of the 3-D hypercube at this point is that it 
is the most fundamental way of displaying all dyadic computations in binary space, thus serving as a 
way of normalizing the rendition of uninterpreted, or raw, binary space.  The hypercube is a 
dimensionless entity, a standard by which  in binary spaces can be measured, analogous to a meter 
stick.   

Introduction
A three dimensional hypercube representing all of the 4,096 dyadic computations in bivalent systems 
has been created.  There are 16 functions that can compute a dyadic relationship, each component of 
the dyad, as well as its operator, being a function.  These functions are arrayed in a table of functional 
completeness that reflects a binary counting from 0000 to 1111.  Each function in the hypercube has 
been color keyed as an aid to make any patterns more visible.  The hypercube is a new canonization of 
three-dimensional binary space.  At the minimum, the hypercube and the canonization underlying it 
serve as a “multiplication table” or table of computations and values that shorten the time to do 
operations that normally would take longer using conventional truth table methods.   There are other 
uses, such as various hypercubes consisting of binary spaces used to compute optimal communications 
paths ( “hamming distances” ).  The main significance of the hypercube at this point is a description of 
the most fundamental three-dimension space in the binary world and a standard by which there can be a 
classification and analysis of patterns in binary space, be it randomly generated or from known process. 
Patterns, or displays of regularity may be produced by a regular process.   Patterns emerge from deep 
innate structures in the universe.   The hypercube is a structure created from a known process, and 
gauging a pattern generated from reputedly random processes against it may be a way of understanding 
randomness. Currently the hypercube is being presented here for research purposes.

Construction of binary logical space and functional notation
Zeros and ones and permutations of those as successive quantities present themselves as ordered logical 
space.  These semantics are in keeping with a fundamental aspect of mathematics discussed by 
Giuseppe Peano in 1898 concerning postulates describing ordering based upon increasing quantity. 
Peano's Postulates lack a critical postulate concerning a definitive association between succession and 
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increasing quantity by a regular increment.  Yet, the notion of succession, or ordering, exists. 
Mathematics and logic are co-joined by order based on succession marked by increase, or mounting 
quantity of  binary space, and there is a philosophy underpinning it [1].

Our semantics reflects that philosophy of order.  The four rows of permutations of existent relationships 
yield a 16-column space, the Table of Functional Completeness (TFC).  It is called “complete”, as all 
possibilities, or permutations, of 0s and 1s appear for the placeholders p and q.  This is generated by the 
same method as with the above tables – serially and in ascending order (binary counting) in the same 
manner as the previous tables and in this case from 0000 to 1111, every column being vertically read. 
Columns are headed by  an “f” with subscripts ranging from 0 through 15, each designating a particular 
function.  In computer language, bytes consist of eight bits, and half a byte is a nybble.  The TFC 
consists of 16 columns of nybbles; a function is a nybble.  The notation is consistent with that 
presented by Irving Copi in his Symbolic Logic [2].  However, his functions are discussed only in terms 
of completeness of the binary system.  Nothing is written about the nature, philosophy, or the use of the 
functions as discussed in this paper.

While the TFC includes the p and q generators, or placeholders, they could be omitted, leaving the 
functions. Philosophically, it can be said that process (a function) is object (result of computation), and 
object is process.  (Notice, also, that in keeping with our ontological commitment of having only two 
existents, 0 and 1, that stripped of the letters and the function designators, all that remains in the TFC 
are those 0s and 1s, or only bits)  We will see more of this shortly, where a function is an operator, as 
well as a result of a computation.  This makes the logical space an entirely closed and complete space. 
One function is always the result of two other functions being computed via an operator function.  The 
TFC showing all the permutations of relationships between existents as functions is the following: 

p q f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 1 - Table of Functional Completeness (TFC)

For example, referring to simple existents, row 3 for function 4 (f4), is read, “function 4 relates p=1 to 
q=0  to yield 0.”   

With more than two variables, or existents, the TFC is expanded to 2n rows of permuted values, where 
n=number of variables and (2n)n columns in the table.  With three variables the display of zeros and 
ones is simply doubled, where “0” becomes “00”, and so forth.  With four variables, it becomes 
“0000”.  

From the TFC those teaching propositional logic create notational standards for expressing 
relationships between two existents.  Four functions – nybbles - normally are taught: and (&), or (∨), 
equivalence (≡), and implication (⊃) - but there are 16 functions, and each can be given an operator 
symbol, viz:



f0 X - Contradiction
f1 &, and, conjunction
f2 >, p is greater than  q
f3 1>, 1 precedes, or, simply "p"
f4 <, p  is less than q
f5 >1, 1 follows (or simply "q")
f6 ≠, p or q is true (1) but not both (XOR);exclusive “or”
f7 ∨, p or q is true or both are true; inclusive “or”, disjunction
f8 NOR, neither p nor q or both is/are true
f9 ≡, p is equivalent to q in truth value
f10 >0, 0 follows (or simply "not q")
f11 ⊂, ←  q contains p
f12 0>, 0 precedes (or simply "not p")
f13 ⊃, or →  p contains q (often called “IMP”) – defines deduction
f14 NAND, not both p and q are true
f15 T, tautology

Table 2 - Functions, Symbols, and Their Names

Negation (~) is a unary operation, and the TFC implicitly defines it, with functions f8 through f15 being 
opposite or “mirroring”, reflections of f0 through f7.   (Although functional completeness is discussed 
commonly, names often are not given to the functions or standardized.  Operator symbols are not 
standardized; “&” is the same as “^”, “·”, and “and”.) 

Truth tables and the new canonization
Truth tables are in functional form, e.g.,  0011 (third column in the TFC) is f3.   A calculation like f10(f12, 

f4)  → f11) follows the same procedure as with the standard four operators.   For example,  f10 means:

p q p  >0 q
0 0 1
0 1 0
1 0 1
1 1 0

Table 3 - Truth Table for f10

The resulting value is 1 when 0 is the second value in the relationship.  Otherwise, the result is 0.  Any 
function operating over p - (f3), and q - (f5), or the four permutations of 0 and 1, will yield itself.  So, 
the function defines itself, as in f10(f3, f5) → f10 and f9(f3, f5) → f9 .  The “ → “ will be used 
interchangeably with “⊃” for typographical convenience.    Now, replacing the  f12 and f4 values for the 
ones in p and q, p = 1100 and q = 0100, respectively, we have the following:

p q p  >0 q
1 0 1
1 1 0
0 0 1
0 0 1



 
Table 4 - Truth Table for f10(f12, f4)  → f11

To illustrate the rapidity of space saving, the new truth table canonization is:

p q p  >0 q
f3 f5 f11

Table 5 - New Truth Table Canonization

The syntax for dyadic computations is fn(fx, fy) → fp,, where fn  represents a binary operator, such as f7, 
or 0111.   The fx and fy represent the operands, and the fp is the result of the computation.  N-adic 
computations take the form fq(fn(fx, fy) → fp,)) → fr ... f* , with the fq and fn being operators.  The  fp 
and fr are computational results.  Again, any function, as in fr and  f*, can be an operator, or an 
operand, depending upon its placement in the syntax.  Such is one of the factors making binary logical 
space closed, each function being in dialectical relationship with the others (one in terms of the others), 
where it can serve in an opposite capacity – operator or operand.  Process as an operator becomes the 
object of an operator (a result of a computation), and object as a function becomes a process.  For 
example, f13 is the material implication operator, but it also can be the result of a computation.

Evaluation is standard, working from the innermost parentheses to the outermost.  It is optional 
whether to re-iterate the f3 and f5 underneath the formula being evaluated, as these values already exist 
in the permutation table.  They have been left in to demonstrate that many computations can be done 
simply by inspecting the function.  

To appreciate the space saving nature of the canonization, we have a standard truth table, such as:

p q r s (p & q) → [(r ≡ s) v (p → r)]
0 0 0 0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 1 0 0 0 1 0 0 1 1 0 1 0
0 0 1 0 0 0 0 1 1 0 0 1 0 1 1
0 0 1 1 0 0 0 1 1 1 1 1 0 1 1
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
1 1 0 0 1 1 1 1 0 1 0 1 1 0 0
1 1 0 1 1 1 1 0 0 0 1 0 1 0 0
1 1 1 0 1 1 1 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 6 - Standard four variable table



rendered as: 
1 3 1 2 1

p q r s (p & q) → [(r ≡ s) v (p → r)]

f1 f9 f7 f13

f0 f0 f3 f5 f0 f0 f0 f15 f3 f9 f5 f15 f0 f15 f3

f0 f15 f3 f5 f0 f0 f15 f15 f3 f9 f5 f15 f0 f15 f3

f15 f0 f3 f5 f15 f0 f0 f15 f3 f9 f5 f11 f15 f3 f3

f15 f15 f3 f5 f15 f15 f15 f11 f3 f9 f5 f11 f15 f3 f3

Table 7 - Four variable table in only terms of functional notation

The canonization explanation is published in The Journal for Systemics and Informatics [3].

Composition of the hypercube
The hypercube represents the 4,096 permutations of dyadic (two place) computations of the sixteen 
functions in the Table of Functional Completeness (TFC), i.e. fn(fx, fy), where fn is a selected operator 
and the ordered pair x, y as operands.  The hypercube is to computational completeness for dyadic 
relationships as the TFC is to the permutations of 0s and 1s as a four place number.   The first is three-
dimensional, the second two-dimensional.  The hypercube contains the smallest volume that can be 
occupied in Euclidean space.  This fact ensures that the resulting permutation space is optimal.
There are 16 plates in the hypercube, each corresponding to one of the 16 functions.  Each plate 
displays a Cartesian coordinate form of a particular function operating over the 16 functions, including 
itself and shows the complete permutation of computations for a function.   There are 162

 computations, 
in each plate or 256 results.   In reading the hypercube one starts from the top left of each plate, reads 
downward and then across the top to arrive at an an answer.  A number of function pairs are not 
commutable, i.e., yield the same result if the functions are switched. Thus, in Plate f6, for f6(f9, f12) to 
get f5, read down the left-hand most column to f9 and then across to the column headed by f12 in the 
manner of a distance chart on a highway map to get the f5.  The same plate shows  f6(f8, f11) = f3.   The 
plates are like TFC generation but with ascending functions.   Two samples appear in the Appendix.

Computational significance of the hypercube
The hypercube acts as a multiplication table for doing dyadic computations in binary space. Rather than 
displaying a full truth table one can do a chained calculation, such as f13((f7(f4, f8), f1(f12, f3)), f9)  simply 
by starting with the innermost parentheses, as in standard logical calculations, and working to the 
outermost function, f13.  In this case, using the hypercube, the final result is:

f7(f4, f8) → f12      f7 plate – first set of innermost parentheses

f1(f12, f3) → f0      f1  plate – second  set of innermost parentheses

f7( f12, f0) → f12    f7  plate – f7 function operating over the results of the previous two calculations

f13(f12, f9) → f11    f13 plate – final calculation.



Towards pattern recognition in binary space with the hypercube
A pattern is a display of repetition.  A pattern can indicate of an ordered process that is emerging and 
we should be able to determine the nature of the process generating it and predict how the display will 
appear in the future.  Patterns display order, and it is order through the lens of the hypercube as an 
observing and measuring device that we hope to see what produces that order in a binary space. Binary 
space may be able to display patterns resulting from proofs and demonstrations, machine language 
programs, Turing machine programs, and cellular automata, among others.  Each is an ordered process, 
hence potentially being able to exhibit a pattern in the hypercube.  Much of the following is speculative 
but offers a foundation for future research in ascertaining the efficacy of the hypercube as a way of 
detecting and analyzing regularity in binary spaces.    

There are two types of spaces, one purposeful, where we know what generated it, and the second, one 
resulting from an unknown generator.  The question about emerging patterns can be answered in a 
straight-forward way.  Create a number of theorems, or deductive arguments, and generate a truth table 
to exhibit an arrangement of 0s and 1s, some or all of which may exhibit a regularity. Theorems are 
structures, some of which are of thinking itself.  They may represent types of abstraction.   Certain 
modes of thinking present certain types of binary spaces.  It may be the case that two or more theorems 
present the same arrangement.  Each arrangement can be classified, as Wolfram has done with his 
cellular automata [4].  Once a “dictionary” of pattern types resulting from these theorems is produced, 
we can use it to compare regularity generated randomly or from unknown processes.  Theorems can be 
created by the methods of proof, conditional proof, short truth tables, or by the hypercube.   We see 
may a pattern in the hypercube or that the cube can analyze it.  If so, then, we will be on the way of 
discovering the origin of patterns in a reputedly random space.

Tracing the origin of a valid relationship using the hypercube
We ask what ultimate two functions will give tautology (f15) as a result for a theorem's  corresponding 
conditional, that is, fn(fp, fq) → f15.  We go to Plate f13 and look inside the plate for the f15 s.  Each f15  is 
the result of one function, or conjunct of them implying another to give a valid relationship, or theorem. 
Then we determine what two functions f13 operate over to give the f15, and there are many.  We see 
f15(f0, f0) as the first. Remember, read the intersection of the first row and the first column to see the f0, 
just like a distance finder between two cities on a road map.  Thus, f13(f0, f0) → f15 .  Similarly, we see 
all across the f0 row a series of f15 s, i.e., f13(f0, fn) → f15 or  f13(fn, fn) → f15, for that matter, n being any 
function.  For the f1 row, every other function yields f15, as in f13(f1, f1) → f15 and f13(f1, f3) → f15. 
Another example is f13(f6, f14) → f15.   Now, we ask what functions can produce each of the functions 
used by f13 to produce f15.  Such an exercise is rather extensive, but as has been demonstrated, the 
hypercube shortens this research considerably, as only a look-up is required.  For example, we have 
f13(f8, f12) → f15 (in fact f8 – f15).  Then, how we can get an f8?  Just about any of the hypercube plates 
will tell us quickly.  Taking one at random, let us say f4, we can locate many, such as  f4(f7, f8-15) → f8. 
Plate f9, as another example, shows that f9(f13, f10) → f8.  Hence, the task of determining exactly what 
computational result gave rise to a function is not possible, because of their being at least two paths to 
the same result.  One should realize, however, that theorems can be created by such backtracking in the 
hypercube, just so long as  one preserves the relationships set forth in the corresponding conditional. 
Here, in addition to the the long and short truth tables method, the hypercube serves as a useful short-
hand tool for  creating theorems. It also can act as a theorem prover.  Simply backtrack by inspection 
from  a result to see if what reputedly gave rise to it actually did.  A worthy research project would be 
to create a computer program to generate theorems from the hypercube, classify them according to 
emerging patterns or methods of generation, and create the dictionary alluded to earlier.



The Hypercube as foundational for pattern analysis
To date, there has been no method to find exactly all the functions generating a function or a space, 
save for a nearest neighbor analysis of cellular automata using a Turing-style tape of 0s and 1s [5]. 
Contrary to this, the analyzable spaces here are not necessarily produced by using a cellular automaton 
or neighborhood space method.  The 0 and 1values may be inserted from anywhere by any method, 
thus adding force to the term “raw space”.

We are not trying to say what a pattern represents, such as a face or language character but merely that 
a regularity exists, and we should ask what gave rise to it.  The whole theory underlying this paper is 
that all binary patterns have their origin in some place in the hypercube, as the hypercube is the most 
fundamental 3-D building block of binary logic, given what the above discussion about theorem 
generation illustrates.  From that origin, there is built from various functional relations expressed by the 
cube the emerging pattern.  Patterns don't emerge from nowhere.  There is an origin and the progression 
is orderly.  For example, in examining the hypercube closely, it may be asked whether certain 
groupings, such as the assemblage of f15s on plate f11 constitute a core, or a “seed” for “gliders”, the 
image so popular in discussing cellular automatons [6].   Aside from any reference to order emerging 
from chaos in the binary world or whether there are Lorentz attractors, there are already in each of the 
sixteen plates emerging patterns of color, as with Plate f7, where, with f7, there is a string of f7s, 
followed by eight f15s, both vertically and horizontally, suggesting boundary conditions of some type. 
The diagonals in each plate show a functional counting, one diagonal ascending, the other descending. 
By coupling all the plates together, a three-dimensional view may reveal more.  Already can be found 
emerging grouping, or clustering, of functions, as in Plate f4, where f2 seems to congregate in groups of 
three at various places along the top of the diagonal.  The hypercube also may contain patterns 
classified in the dictionary of theorems mentioned above. 

We also question whether there is a family of patterns or an algebra of spaces.  For example, there is 
f13(fn, f15) → f15, f13(fn, fn) → f15, and f13(f0, fn) → f15, where n is any function, and from this we may say 
that f7[f13(fn, f15), f13(f0, fn)] → f15, and list equivalent relationships with appropriate substitutions. 
Theorems are algebraic expressions. 

When we see a space for the first time, it can be designated as a “raw binary space”, meaning that if we 
discern any regularity of the values, we may not know what generated them.  Let us say a pattern has 
been generated “randomly”.  One may argue that there is “emergence”, but of what?  Patterns displayed 
resulting from allegedly autopoietic, or self-organizing  processes present a challenge of determining 
what the organizing principle is.   For any regularity in binary space, we should ask not only what 
generated it but what its significance is.   In Wolfram's automata, what do any of the patterns generated 
by the automatons mean, save for the design being associated with a rule?   Rules are specific thought 
patterns, but is there a more general observation about thinking we can make?   Later, we will touch on 
this subject in discussing a correlation between binary spaces and activity in brain structures.  We won't 
analyze patterns (as many ways exist for doing so [7]) but suggest a way of normalizing a space and 
propose the hypercube as a measuring device for the raw spaces.  To work with patterns in binary 
space, one can consider a way of making the hypercube a measurement and classification device.  Raw 
spaces should be normalized, such as padding sets of bits less than a nybble (four bits) either before or 
after with 0s, as spaces can be only of complete functions.  One compares the normalized space using 
the “dictionary of theorems”, mentioned above.  A second means of classifying spaces is with the 3-D 
hypercube; what in that “raw space” looks like the regularity inside any of the plates in the hypercube? 
The hypercube is a baseline against which to measure deviation of any set of blocks of binary space.  



 A system without axioms
To this point we have not identified any axioms but yet have been able to generate theorems by the 
definition of deduction, truth table methods, and corresponding conditional rule.  All are based on the 
rule that a statement must be derivable from the previous, and that derivation can be found through 
inspection by using the hypercube.  This means that in terms of zeros and ones, the “and”,  as well as 
“material implication” operator/function a deductive relationship holds.  Validation that a statement 
follows from the previous is done by inspection of the hypercube.  This means that our system is 
without axioms, or naturally and intuitively deductive.

All of the functions emerge from juxtaposition of numbers in an ascending fashion.  The table of 
logical space is set, and the functions are only naming devices for particular sets of 0s and 1s in that 
space.  It is not necessary to use axioms to derive the functions.  Only an ordering principle is needed, 
coupled with the primitives, definitions, and so forth.  It is proposed that Peano's Postulates form the 
basis of such a system, plus a postulate that asserts mounting quantity based succession.  A start would 
be focusing on the concept of number based on a fundamental Cartesian cut.

Philosophical significance of the binary structures
The two-valued, or binary, system is foundational in deduction, as it uses the lowest number of 
variables possible to construct a system of relations.   The simple observation, other than of the whole, 
is of two.  This observation stems from an extreme division of any object in the three dimensional 
universe; ultimately, it will be reduced to the smallest of the smallest, or Planck volume in terms of not-
Planck volume, or vacuum space.  Of course this sub-quantum world must be apprehended in terms of 
the whole in order to place matters in proper perspective.   The three dimensional world  is 
syntactically binary [8].  

This author's assertion is that logic is a language that describes  innate order in the 3-D universe and 
that it is the basis upon which mathematics rests.  Logic is discovered, rather than invented; "...a 
machinery for the combination of yes-no or true-false elements does not have to be invented. It already 
exists [9]."  Jean Piaget asserts, “There exist outline structures which are precursors of logical 
structures,... It is not inconceivable that a general theory of structures will...be worked out, which will 
permit the comparative analysis of structures characterizing the outline structures to the logical 
structures ... .[10]”.  This idea is not new, as it extends as far back as 5000 years ago in South Asia [11], 
and with the Chinese 4,000 years ago and the I Ching.  Leibniz [12], the first modern scientist to 
formalize the binary arithmetic in 1703 wrote of it.

When one attempts Cartesian subdivision at the quantum level, the world of uncertainty is met, and one 
cannot measure position, except statistically.  Yet, computationally, we can go to the Planck scale, 
where all symmetries are broken.  To divide something beyond a Planck volume would require more 
energy than exists in the universe.  What exists in terms of not-Planck volume is vacuum space, which 
is penetrated periodically with energy fluctuations.  At the Planck scale, nothing is discrete, so one has 
to identify what makes a description of reality binary [13].  We certainly do not know what is at the 
Planck scale level, as this degree of granularity is theoretical and merely computational.  At the Planck 
scale, the very nature of the binary world is transformed, where bivalency transforms to a four 
dimensional world and a four-valued system [14].  This system is the superset of the three-dimensional 
bivalent system.

The unfolding structure of the most basic logic in the three dimensional world - binary relationships - 
comes from natural ordering [15].  Logical space is generated in an ascending fashion and ultimately 
contains all the relationships possible in this world.  Recall, everything is reducible to Planck volume 



and non-Planck volume, a duality.  From the singular and planar logical spaces comes the three 
dimensional hypercube.  

Future direction in research
Much of what follows is speculative, but it was stated at the outset in this paper that the hypercube is 
being presented for research purposes.  Aside from lofty considerations of the quantum world [16], the 
hypercube has more prosaic applications such as an algebra of spaces.  Consider commutativity as error 
checking device.  Commutativity is symmetric, where fC(fp, fq)=fC(fq, fp).  This goes for C=0, 1, 6, 7, 
8, 9, 14, and 15.  Functional computation may be expressed in algebraic form, such as the simple 
example in the f5 plate, where f5( fn, fp) → fp, and where fn and fp represent any two distinct functions. 
Similarly, f3(fn, fp) → fn exists for the f3 plate.   For plate f8(f15, fq) = f0 and f8(fp,f15) = f0, so f8(f15,fq) = 
f8(fp,f15).  Numerous and more complicated relations may be developed, but such is work for further 
research.

We have seen where the new canonization with the functional notation can result in an algebra of 
functions to generate inference and equivalence rules.  For example, modus ponens is p ⊃ q, p,  q.  In∴  
our canonization, this is f13(a conjunct of functions resulting from others) → fc, (a conclusion, or 
derived function) where f13 must result in f15, or tautology.  Research might produce a computer program 
to generate not only acceptable rules, but these might be used to help produce an algebra of spaces. 
Already, we have seen where the hypercube has aided us in finding theorems using the corresponding 
conditional and a computer program can be written to do this. 

We said above that each of the 16 functions is recursive, i.e., the outputs forward fed as inputs into the 
function cause the function to reappear [17].  Thus, each function acts as a self-maintaining, or 
homeostatic, automaton.  Of course, all binary spaces are composed of one or more of these functions, 
or partial functions (less than a nybble).  Starting with a set of set of formulas demarcating an initial 
space, it would be interesting to see how that space evolves until it repeats itself.  No entity at whatever 
level is static, so tracing the dynamism of an initial state of binary functions would give an insight to 
pattern generation and possibly shed light on how basins of attraction form.

As a longer term project, one may map each function  to a sound or color to see what patterns may 
emerge.  Newton, following an idea by the ancient Greeks, suggested that there may be a correlation 
between color and sound [18].  Correlating sound to color is not novel these days [19].  In various 
computer programs designed to play CDs, such as Windows Media, one can view colored patterns 
emerge when playing music.

Consciousness studies can be explored with processes applied to binary spaces.  According to Tononi, 
consciousness is integrated information, “...the amount of information generated by a complex of 
elements, above and beyond the information generated by its parts.” [20].  Consciousness arises from 
the condition of neural systems, and these can be represented in a binary manner, i.e., on-off switches, 
or as Tononi refers says, “photodiodes” [21].  Of course, to represent anything approaching what 
people think is consciousness would involves enormous complexity, as Tononi admits, but his serves a 
model for research.  Perhaps the the 3-D hypercube developed in this paper could be overlaid on to the 
binary space generated by Tononi's model, much in the same manner as discussed earlier with respect 
to binary spaces in general.  The theorems and their corresponding patterns generated by the hypercube 
might have neural correlates and such would involve Tononi's research.  This world is just beginning.  



Conclusion and outlook
The most basic binary logical space is generated from a single square to two squares, one containing a 
value and the other a second value.  The permutations of this two-squared space yield four 
permutations of the two values.  These, in turn, produce the sixteen basic functions displayed in the 
Table of Functional Completeness (TFC).  From the TFC is developed the three-dimensional 
hypercube.  Functions also are results of computations and vice versa.  A new canonization has been 
presented that allows for a simplified way of computing dyadic relationships, as well as traditional truth 
tables.  The hypercube is color coded to help display the relationships of functions to each other and 
identify patterns. At the outset the hypercube can be used as a look-up table to yield the results of any 
dyadic computation involving any of the 16 functions.

The hypercube allows for more rapid and simplified dyadic computations in bivalent space, but also 
may enable enhanced methods for computing hamming distances.  There are indications that Lorenz 
attractors may exist within the hypercube, these possibly indicating seeds from which order is 
generated from what was thought previously to be chaos.  Something (a pattern) doesn't come from 
nothing.  The universe at the third dimension has innate order, described by binary structures, the 
hypercube being one.  While there is evidence of randomness (inability to predict), such as Brownian 
movement and pi (π), there is an innate order in the universe, and chaos contains encoded order that can 
be untangled by logical analysis. 

Numerous research areas stem from the development of the basic hypercube, all centering on pattern 
analysis of structures expressed in binary space.  Once an undefined binary space is mapped onto the 
ordered one, the same analytical process of pattern recognition can be applied, thus leading to a 
uniform way of  looking at reality in many of its diverse but reducible forms.
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Appendix

Sample Plate of The Three-dimensional Hypercube

f1 - AND – conjunction  p & q
f1 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

f0 f0 f0 f0 f0 f0 f0 f0 f0 f0 f0 f0 f0 f0 f0 f0 f0
f1 f0 f1 f0 f1 f0 f1 f0 f1 f0 f1 f0 f1 f0 f1 f0 f1
f2 f0 f0 f2 f2 f0 f0 f2 f2 f0 f0 f2 f2 f0 f0 f2 f2
f3 f0 f1 f2 f3 f0 f1 f2 f3 f0 f1 f2 f3 f0 f1 f2 f3
f4 f0 f0 f0 f0 f4 f4 f4 f4 f0 f0 f0 f0 f4 f4 f4 f4
f5 f0 f1 f0 f1 f4 f5 f4 f5 f0 f1 f0 f1 f4 f5 f4 f5
f6 f0 f0 f2 f2 f4 f4 f6 f6 f0 f0 f2 f2 f4 f4 f6 f6
f7 f0 f1 f2 f3 f4 f5 f6 f7 f0 f1 f2 f3 f4 f5 f6 f7
f8 f0 f0 f0 f0 f0 f0 f0 f0 f8 f0 f8 f8 f8 f8 f8 f8
f9 f0 f1 f0 f1 f0 f1 f0 f1 f0 f9 f8 f9 f8 f9 f8 f9
f10 f0 f0 f2 f2 f0 f0 f2 f2 f8 f8 f10 f10 f8 f8 f10 f10
f11 f0 f1 f2 f3 f0 f1 f2 f3 f8 f9 f10 f11 f8 f9 f10 f11
f12 f0 f0 f0 f0 f4 f4 f4 f4 f8 f8 f8 f8 f12 f12 f12 f12
f13 f0 f1 f0 f1 f4 f5 f4 f5 f8 f9 f8 f9 f12 f13 f12 f13
f14 f0 f0 f2 f2 f4 f4 f6 f6 f8 f8 f10 f10 f12 f12 f14 f14
f15 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

f13 - ⊃,  p contains q, p ⊃ q,  – defines deduction
f13 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

f0 f15 f15 f15 f15 f15 f15 f15 f15 f15 f15 f15 f15 f15 f15 f15 f15
f1 f14 f15 f14 f15 f14 f15 f14 f15 f14 f15 f14 f15 f14 f15 f14 f15
f2 f13 f13 f15 f15 f13 f13 f15 f15 f13 f13 f15 f15 f13 f13 f15 f15
f3 f12 f13 f14 f15 f12 f13 f14 f15 f12 f13 f14 f15 f12 f13 f14 f15
f4 f11 f11 f11 f11 f15 f15 f15 f15 f11 f11 f11 f11 f15 f15 f15 f15
f5 f10 f11 f10 f11 f14 f15 f14 f15 f10 f11 f10 f11 f14 f15 f14 f15
f6 f9 f9 f11 f11 f13 f13 f15 f15 f9 f9 f11 f11 f13 f13 f15 f15
f7 f8 f9 f10 f11 f12 f13 f14 f15 f8 f9 f10 f11 f12 f13 f14 f15
f8 f7 f7 f7 f7 f7 f7 f7 f7 f15 f15 f15 f15 f15 f15 f15 f15
f9 f6 f7 f6 f7 f6 f7 f6 f7 f14 f15 f14 f15 f14 f15 f14 f15
f10 f5 f5 f7 f7 f5 f5 f7 f7 f13 f13 f15 f15 f13 f13 f15 f15
f11 f4 f5 f6 f7 f4 f5 f6 f7 f12 f13 f14 f15 f12 f13 f14 f15
f12 f3 f3 f3 f3 f7 f7 f7 f7 f11 f11 f11 f11 f15 f15 f15 f15
f13 f2 f3 f2 f3 f6 f7 f6 f7 f10 f11 f10 f11 f14 f15 f14 f15
f14 f1 f1 f3 f3 f5 f5 f7 f7 f9 f9 f11 f11 f13 f13 f15 f15
f15 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
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