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1. INTRODUCTION 

 
The combination of new technologies that bring forth a series of 

innovations is referred to as the fourth industrial revolution, 

shaping Industry 4.0. The technologies involved in Industry 4.0 

assist and complement established processes in the industrial 

landscape, contributing to the efficiency of production control. 

The convergence of established productive methodologies with 

new technologies from Industry 4.0 represents a significant 

challenge for the industrial sector, demanding a shift in policy to 

adapt and optimize processes through the utilization of available 

technologies [1,2]. 

 
The technologies at the core of this new industrial revolution 

primarily rely on the use of cyber-physical systems, information 

and communication technologies, coupled with the integration of 

artificial intelligence and the "Internet of Things" (IoT). Cyber-

physical systems establish the connection between Industry 4.0 

technologies and the physical environment through monitoring 

and automatic control, typically involving feedback cycles and 

bidirectional information exchanges [3,4]. These technologies 

enable the development of projects capable of providing 

autonomy in decision-making and flexibility to the industrial 

processes that employ them [5]. 

 

 Industry 4.0 incorporates structures used in specific 

combinations, depending on the problem to be addressed. These 

structures include interoperability (the ability of cyber-physical 

systems to communicate with each other), virtualization (the 

cyber-physical system's ability to transform a physical system 

into a virtual system), decentralization (autonomy of the system 

for decision-making), real-time communication, and 

modularization (the ability to adapt with flexibility to the 

proposed problem) [6]. 

 

Considering the virtualization present in Industry 4.0 

technologies, it can be understood as the creation of a virtual 

version of a physical model by the cyber-physical system, 

generating a connection used for data collection, impacting the 

model [6,7]. From this concept, the "digital twin" (DT) was born, 

which can be defined as a unified, detailed, and realistic 

representation of the cyber-physical system, featuring aspects of 

modularization, autonomy, connectivity, and involving cognitive 

control processes [8,9]. The digital twin is efficient for process 

control, performance analysis, and contributes to fault prediction 

through simulations using real process data and returning 

predicted parameters [10]. Another aspect that integrates the DT 

definition is multiscale simulation, dividing the analysis into 

modules, which enhances the efficiency of information flow [11]. 

 

The first definition of DT emerged with Grieves in 2003 [12], 

presenting it solely as a virtual representation of a physical 

model. This concept has seen enhancements and new 

perspectives over the years, as reflected by Tao and Qi [13], who 

portrayed the DT as precise virtual copies of processes or 

products sustained by real-time sensor-collected data. IBM [14], 

in its DT definition, emphasizes the system's evolution 

concerning the physical environment's lifecycle, highlighting the 

importance of incorporating techniques such as machine 

learning, simulations, and data analysis, providing autonomy to 

the system. 

 

According to GE Digital [15], the DT is a virtual representation 

of an asset or process used to understand, predict, and optimize 

its functionalities. Deloitte [16] shares this definition and adds 

that through the DT, it is possible to quickly simulate conditions 

and share data to act in the physical environment, seeking the best 

output scenarios. 

 

NASA [17] and Dufour [18] present the DT concept as a multi-
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techniques and digital models capable of faithfully reproducing 

processes, products, or operational systems. 

 

From a productive standpoint, the DT, through its digital 

representations, can collaborate with other systems and digital 

twins to achieve comprehensive intelligence that enables 

decentralized self-control [19]. It also has, as one of its main 

characteristics, the ability for constant and instantaneous 

transmission of data and information between the environments, 

aiming at system optimization and evolution [20, 21]. 

 

The DT involves different areas such as collaborative work 

between humans and robots [22], smart factories [23,24], the 

telecommunications sector [25], energy generation systems [26], 

additive manufacturing processes [27], smart agriculture systems 

[28], among others. 

 

The modularization provided by the DT facilitates productive 

integration, allowing systemic autonomy that provides the 

environment with the capacity to respond to problems efficiently, 

intelligently, and automatically. The closure of this cycle occurs 

through connectivity that allows the use of past data for future 

decision-making. Thus, the digital twin is the procedural 

intermediary that provides the flow of information, generating 

connectivity between project cycles [8]. 

 

The process of virtualization and digitization of the physical 

model has three facets based on how the flow of information 

occurs. When data is collected and returned to the physical 

environment manually, it is a digital model (DM). However, 

when there is an automatic and unidirectional exchange of 

information between the physical and virtual environments, with 

changes in the physical model reflecting instantaneously in the 

virtual model, it is a digital shadow (DS). On the other hand, 

when there is a bidirectional exchange of information between 

the physical and virtual environments, happening 

instantaneously and automatically, with changes in either model 

reflecting in its counterpart, it is a digital twin [29]. 

 

Furthermore, the concept of a digital twin can be divided into two 

aspects: the digital twin prototype (DPT) and the digital twin 

instance (DPI). The DPT uses the necessary information from the 

physical environment to describe the virtual one, which can 

include 3D models but is not limited to modeling. The DPI, in 

turn, resembles the DPT; however, the exchange of information 

that occurs is constant, making it dynamic [30]. 

 

Digital twins provide information considering current, historical, 

and future data through the prediction of the physical "twin." 

They are considered the foundation for the future implementation 

of digital factories (DF), which rely on information flow for 

decision-making and guidance on the operation of the physical 

model. For this purpose, digital twins need to evolve into active 

and autonomous systems capable of detecting and processing 

their environment, proactively exchanging information, making 

autonomous decisions that align with their objectives, and 

integrating with the physical environment to apply determined 

guidelines [31]. 

 

An explanatory diagram regarding the main components that 

structure the Digital Twin concept is presented in Fig. 1. 

 

 
Figure 1 - Schematic Structure of the Main Components of the 

Digital Twin 

 

Considering the scheme presented in Figure 1, it can be 

highlighted the constant flow of information, as well as the 

automatic interaction that occurs among the elements composing 

the entire system. Thus, the DT can be used for process 

monitoring, analysis and fault prediction, analysis for process 

optimization, and even in support of maintenance. It is interesting 

to note that, in addition to the data collected in the physical 

process, the know-how of operators and technicians can be 

considered in the analysis. Figure 1 represents a possibility of DT 

application in the production environment. It is known that DTs 

include "ultra-realistic, high-fidelity" integrated models 

describing the physical behavior of the real system. This may 

require the integration of various models, such as multi-physics, 

damage models, models to address randomness, structural 

analysis (using finite elements), etc., making the system robust 

enough for the digitization and information flow of complex 

processes [31]. 

 

The first concept of DT, presented by Grieves [12], was 

developed considering three dimensions for its operation: 1 - The 

physical entity in physical space; 2 - The virtual entity in virtual 

space; 3 - Bidirectional data connection and transmission 

between physical and virtual spaces. However, technological 

advances and the substantial increase in data generation from 

modern equipment render Grieves' proposal obsolete. Thus, Tao 

et al. [32] suggested adding two dimensions to Grieves' model: 

the data and services modules. 

 

In this new DT model proposed by Tao et al. [32], the data 

dimension takes a central position in the system, performing the 

crossing of information, generating insights and controlling the 

data. The services dimension supports the physical and virtual 

environment, aiming to promote the optimization of the physical 

system and maintain the high fidelity of the virtual environment. 

 

The fundamental components for the development of a DT are 

sensors, data, simulation, analysis, and actuators [9]. Sensors are 

devices used for capturing data from the physical environment; 

these data are transmitted through the connection module and 

stored in a database. The stored data can be analyzed or used for 

validation of mathematical simulation. This simulation consists 

of the virtual representation of the physical environment, 

considering the constituent aspects and interactions between 

individuals and elements of the system. Through data analysis, it 

is possible to visualize performance and produce insights about 

physical, multiscale, and multifaceted integration with different 
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the DT and the real system. Finally, actuators correspond to the 

mechanical part of the process that receives the analyzed data and 

acts in the physical environment with the necessary 

improvements and procedural adjustments. 

 

Therefore, this work aims to describe the state of the art regarding 

digital twin technology, considering the practical and industrial 

application of metalforming processes, as well as related areas. 

For this, a systematic method of selection and analysis of existing 

works will be followed. 

 

In this article, we will present the advantages and challenges in 

the application of DT, the state of the art regarding the 

application of DT for the life cycle of equipment and mechanical 

components, as well as its application for controlling different 

forming processes. Finally, a proposal for DT architecture and 

the study's conclusions will be presented. 

 

2. POSITIVE ASPECTS AND CHALLENGES IN THE 

APPLICATION OF DT 

 

The application of DT has some positive points regarding control 

and productivity [33], such as dynamic monitoring of products 

and services, with high fidelity and in real-time; DT assistance in 

the development of new products, reducing or even avoiding 

design errors, and the possibility of providing customers with a 

virtual experience before the physical product is available; Real-

time interconnection between the physical and virtual parts, 

allowing system operation optimization; Maintenance support 

through fault prediction and asset control; Possibility of 

incorporating different technologies, increasing the applicability 

in different environments. 

 

However, some challenges can be found in implementing DT 

[33, 9], such as those related to modeling and integration between 

different software necessary for system development and 

execution; Provision of adequate communication between 

sensors and receivers; Storage and manipulation of large amounts 

of data (big data); Technical level of individuals involved in DT 

implementation, as it is an emerging technology, and many 

concepts and techniques are not part of many environments 

where DT can be implemented; Implementation environment 

infrastructure and technological capacity of the items that make 

up the DT may pose obstacles to its execution; Since it is a 

technology that incorporates various techniques into a single 

system, support can be a challenge, as several providers are 

involved; It is a costly process due to expenses with sensing, 

connectivity, hardware and software for data storage; thus, its 

application tends to be developed for products or services with 

higher added value; Insufficient development of the concept and 

lack of concrete definition, making implementation difficult. 

 

Due to being a diverse and complex ecosystem that allows for 

various branches, the Digital Twin (DT) faces the challenge of 

the dynamic functioning of the system, whereby the data 

collected in the physical environment interacts organically with 

virtual models, generating insights and an effective control 

system [34, 35]. Regarding system modeling, the main challenge 

lies in validating these models, as some systems are highly 

complex and involve numerous variables, requiring manipulation 

in the digital model to simplify, which can lead to erroneous 

results depending on the level of simplification of the system [36, 

37]. 

 

In addition to the challenge of establishing a system with high 

fidelity to the physical environment, cybersecurity and the proper 

handling of data can also be obstacles during the implementation 

and execution of a Digital Twin. Data analysis is part of the 

structure of a DT, with most of this analysis occurring through 

the manipulation of large volumes of data, known as big data, 

generated primarily through the sensing system during the 

physical process. Consequently, a challenge to be overcome 

relates to the quality of this information, as a data control and 

treatment system may operate complexly. Additionally, another 

challenge concerns the storage of big data, which incurs 

hardware costs. This aspect must be carefully analyzed to only 

store the necessary information to form a relevant history and 

avoid unnecessary expenses [38]. 

 

3. STATE OF THE ART 

 

Given that the digital twin is a methodology that allows for 

various technologies in its application, it has been implemented 

to address different demands. These include smart manufacturing 

[39], predictive maintenance [40, 41, 42, 43], structural analysis 

[44], performance analysis [45], as well as unmanned 

maintenance [46, 47]. To address these demands, proposed 

solutions are incorporating various approaches, such as 

collaborative operation of the digital twin with the use of Big 

Data [39], the utilization of historical data analysis along with 

dynamic data provided by the digital twin [40, 42], the 

application of machine learning [43], and finite element 

modeling [44]. 

 

3.1 Applications of Digital Twin for Equipment and 

Component Life Cycle Management 

 

The following provides a brief review of the state of the art in the 

use of Digital Twin in processes related to the control of 

industrial equipment and components. 

 

Given that predictive maintenance contributes to high industrial 

production performance and that multilevel maintenance, 

involving various parameters for its construction, allows for 

greater accuracy and robustness for the system, Feng and 

colleagues [47] developed a Digital Twin for the creation and 

control of a multilevel predictive maintenance schedule for an 

industrial plant, focusing on autonomy in decision-making. For 

this purpose, they created an autonomous system capable of 

monitoring the operation of various mapped machines through 

sensory devices. The collected information was processed by a 

developed algorithm capable of making decisions based on 

predefined parameters, such as production cycle, number of 

critical components, equipment costs, available maintenance 

technicians, number of spare parts in stock, among others. After 

processing, a maintenance schedule was created and returned to 

the physical environment, closing the Digital Twin cycle. 

 

To develop a failure prediction system in an industrial plant, 

Hassan, Svadling, and Bjorsell [48] created a data-based Digital 

Twin that uses the performance comparison of the physical 

environment to predict the operating status of the machinery, 

with discrepancies identified as maintenance points. The 

comparison between the physical and digital environments was 

based on process response data and their distances. The model 

results were classified into three types: parameter configurations, 

component replacement, and degradation. To evaluate the 

performance of the digital model, a gray-box technique was used, 

along with a comparative analysis between the responses of the 
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Digital Twin and the maintenance records registered by experts. 

Since a non-autonomous model was developed, the exchange of 

information between the physical and digital environments did 

not occur synchronously, leading to some incorrect responses 

from the Digital Twin. 

 

Industrial autonomy plays a crucial role in reducing errors 

resulting from human action and providing greater operational 

flexibility due to possible operator absences. Influenced by the 

demand for unmanned maintenance of machine tools, Lv and 

colleagues [49] developed a Digital Twin architecture capable of 

assisting unmanned maintenance through cognitive support. The 

developed digital model is based on a cognitive method called 

LIDA. This method uses four phases: sensory, memory, 

attention, and execution. The process begins with the capture of 

information through sensing, storage of this information, 

inferences about data intersections, and execution of the best 

decision found. This work resulted in the construction of an 

autonomous system with potential for evolution without loss of 

efficiency, utilizing technical and neurosensory aspects without 

the dependence on experts or human action. 

 

Considering the importance of controlling the lifespan of 

equipment and its components for the productive environment, 

Mourtzis, Tsoubou, and Angelopoulos [50] developed a Digital 

Twin for optimizing the reliability of robotic cells regarding the 

lifespan of their elements. The system was designed using 

supervised machine learning with the aim of detecting and 

classifying the faulty behavior of critical components, in addition 

to creating a 3D model developed from data obtained from the 

physical model through sensory devices. All constructed 

modules were compiled and processed, discussing them with the 

critical elements raised. 

 

Aivaliotis, Georgoulias, and Chryssolouris [10] also developed a 

Digital Twin with a focus on determining the lifespan of machine 

elements. Initially, data was collected by controllers and used as 

synchronous adjustment parameters for digital models. The 

analysis results were processed to predict the lifespan of the 

equipment. 

 

3.2 Applications of Digital Twin in Forming Processes 

 

It is known that quality control ensures the desired product 

performance; however, technological advances require an 

evolution of control methods, demanding systems with greater 

autonomy and improved data acquisition methods. In addressing 

this issue, Zhu and Ji [51] developed a method for quality control 

in forming processes that involves Digital Twin technology 

driven by mathematical simulation of the process and enhanced 

genetic algorithms. The Digital Twin was established by 

combining the physical-virtual model with production data 

processing, compared with process quality indicators. The 

central control system involves four parts: a real-time data 

acquisition and processing system, a bidirectional physical-

virtual production mapping system, a product quality prediction 

system using a genetic algorithm, and a dynamic parameter 

optimization system consisting of evaluation, selection, 

crossover, and mutation of collected data. The developed Digital 

Twin can be applied in various production processes due to its 

generalization, providing efficiency for quality control, as well 

as quality problem management during production. 

 

Regarding technological advancements to keep pace with 

manufacturing development, Zhou and colleagues [52] designed 

a Digital Twin for sheet metal stamping processes using the 

incremental bending technique. The Digital Twin was based on 

the development of a digital model of the physical environment 

and bidirectional information and data exchange. The digital 

model, through numerical simulation by FEM (Finite Element 

Method), calculates stamping forces and compression forces on 

the die. These values are used as a reference in the process and 

compared with values obtained through data acquisition from the 

physical environment through sensing. The developed digital 

model did not have synchronicity concerning data exchange with 

the physical environment; however, this was not a problem since 

the processed material could only be verified after stamping. 

 

The need for the development of intelligent manufacturing arises 

from technological advances and the speed and flow of data 

transmission. Junqueira and colleagues [53] devised a Digital 

Twin architecture, using the Python programming language, 

capable of optimizing the replacement of rolling mill rolls in a 

wire rod mill. Through a backtracking algorithm, a simulation of 

roll selection was developed. This automated selection assists in 

the efficiency of the replacement process, reduces machinery 

downtime, and provides better control of processing 

specifications. 

 

Present in all forming processes, wear must be considered to 

prevent the loss of efficiency in a digital model. In the case of 

stamping, the die and punch are the elements most exposed to 

wear and require a well-defined control strategy. Thus, Gan, Li, 

and Huang [54] designed a Digital Twin based on mathematical 

modeling for monitoring stamping die wear. The development 

process of the Digital Twin was based on creating a mathematical 

model to calculate stamping force and friction coefficient during 

the process. These data are loaded into the system and processed 

by an optimization algorithm. Finally, a FEM model is used for 

quality control of the forming process. The collected data are 

used as parameters in the wear control process for the stamping 

die. The system's result is determined by the difference between 

the stamping force in the physical and digital models, and when 

the required force exceeds a defined limit, the update algorithm 

comes into operation and updates the friction coefficient values. 

 

Wang and colleagues [55] proposed a Digital Twin that 

programmed the ideal amount of water pumping for the cooling 

system of a hot rolling mill. The cooling process in hot rolling is 

complex, as, in addition to the excessive amount of water, there 

is an energy loss from the process due to pumping caused by a 

lack of control over the necessary water level for cooling. 

Through iterative optimization, the system was developed by 

linking machine learning with neural networks, aiming to predict 

water consumption with a model for optimizing reservoir supply 

based on consumption prediction, a digital model linking tank 

water levels with rolling mill speed, and pumping optimization 

for better energy efficiency. The results were satisfactory, with 

the system effectively predicting the required water supply 

levels, optimizing the process. 

 

Zhang and colleagues [56] developed a Digital Twin for the 

analysis and monitoring of vibration in a strip rolling mill. The 

Digital Twin has three layers: the first one to describe the 

geometric parameters of the rolling mill, the second to process 

vibration data, and the third for the mechanical analysis of the 

rolling process. The system uses rolling force data to predict 

vibration and compares the calculated value with actual vibration 

values. As a result, they concluded that vibrational aspects can be 

controlled by maintaining a constant rolling force. 
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4. PROPOSED ARCHITECTURE OF DIGITAL TWIN 

 

The architecture of a Digital Twin (DT) can be structured on 

demand, based on the problem or proposed analysis. The 

development of a DT, considering an industrial process, can be 

based on three stages. The first stage involves constructing a 

high-fidelity 3D geometric model that accurately represents the 

dimensions of the physical model. The second stage includes the 

mathematical modeling of the equipment with the aim of 

transferring a simple geometric model into a digital model, 

considering the properties of the physical device. Finally, the 

third stage consists of synchronizing the physical and digital 

environments, establishing the flow of information. Thus, by 

following these three stages, it is possible to build a DT for 

practical applications to improve production quality and 

efficiency, as well as assist in predictive maintenance control 

[57]. 

 

Based on the architectures developed by Lv and colleagues [49] 

and Quin and colleagues [58], a data-driven Digital Twin 

architecture is proposed in Figure 2, which can be used for failure 

prediction and process control in the forming industry. 

 

The system depicted in Figure 2 consists of three main modules: 

the physical environment, the digital environment, and the 

inference base. The physical environment, composed of 

machinery, sensors, and experts, forms the basis for DT 

implementation. Data acquisition can be performed through 

sensing, expert knowledge, mechanical tests, or other relevant 

means. It is crucial for the application of the system that the data 

be transmitted to the digital environment and the inference base 

synchronously. Information based on expert knowledge can be 

input into the system to enhance it. 

 

The digital environment is the module that transforms the data 

and produces responses that facilitate decision-making and 

processing in the inference base. The digital environment is 

divided into two stages: the first corresponds to the development 

of a 3D geometry of the process, facilitating visualization, 

control, and validation; the second stage concerns the processing 

of data using statistical analysis and artificial intelligence. 

Through the second stage, it is possible to model data for fault 

prediction and process control. 

 

Finally, the inference base is the central module of the entire 

system, as it captures information from the other modules and 

processes it for the best decision-making. The resulting decisions 

and inferences are returned to the physical and digital processes, 

updating them, thus allowing the system to become autonomous. 

The inference base consists of four stages: (1) Perception – 

compilation of received data and storage; (2) Cognition – 

reprocessing data for decision-making; (3) Decision – decision-

making based on information received from the previous stage; 

(4) Execution – action on physical and digital modules with 

process support. 

 

It is important to highlight the bidirectional flow of data between 

the modules. The inference base is responsible for sending small 

services to the system, which updates constantly, providing 

dynamism to the entire process. 

 

In Figure 3, a flowchart is represented which exemplifies the 

scheme of the proposed DT architecture. As the first step of the 

proposed architecture is the collection of information that will 

compose the system. Typically, this data is collected through 

equipment sensing, but the DT can also include other types of 

information such as equipment data from suppliers, operator 

know-how, among other types of data. 

 

Data preprocessing is the next stage, and it holds significant 

importance, as through this stage, it is possible to assess the 

quality and robustness of the data and prepare it correctly for 

subsequent stages. 

 

The proposed architecture addresses two types of data 

processing. The first type is based on the actual analyses, such as 

statistical analyses, application of computational intelligence 

techniques, artificial intelligence, machine learning, among other 

techniques. The second type, which complements the first, is 

based on the virtualization of the physical environment through 

its proper 3D modeling. Techniques such as the finite element 

method, for example, can be used for this task, making the virtual 

environment robust to mirror the physical environment.

 

 
Figure 2 - Digital Twin Architecture for Forming Industry 
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Figure 3 - Flowchart for the proposed DT architecture 

 

The next stage consists of the core of the DT and is based on an 

inference scheme, aiming for systemic autonomy in decision-

making and continuous improvement. This inference base 

follows a path with the compiled data described in Figure 2. It is 

interesting to note that this base has three planning stages and a 

final execution stage, which allows the system to filter the 

proposed decision and refine it, aiming for the best possible 

outcome. 

 

Finally, after the inference base, there are three logical outputs 

that make the DT active and provoke continuous improvement in 

the system. These three outputs are the outputs that contribute to 

making the system manageable and keeping the control active, 

the actions in the physical environment that contribute to 

continuous improvement and the autonomy of the DT, 

maintaining process control and updating the generated data, 

keeping the base robust and the 3D model faithful to the physical 

environment. 

 

5. CONCLUSION 

 

Influenced by the technological advances in manufacturing, 

specifically in metalforming processes, and considering the 

importance of process control and predictive maintenance, the 

study of the development of the digital twin methodology, 

derived from Industry 4.0, became relevant. This article 

highlighted the state of the art of the DT methodology with a 

focus on processes in the mechanical forming industry. Finally, 

an architecture for application in this industry was proposed. 

 

The main challenges for implementing DT in the mechanical 

forming industry can be concluded in three aspects: 

 

(1) Acquisition and quality of production data, since in 

many processes, collecting some data is impractical 

due to complexity, requiring the acquisition of 

secondary data and manipulations for specific 

purposes. 

(2) Validation of the digital environment and reliability of 

responses. Due to the dynamic mechanisms and 

unfavorable aspects such as wear in the physical 

environment, validating the digital environment can be 

challenging. 

(3) Automation of the system may pose a challenge 

because physical processes lack constancy. 

 

This work aimed at a theoretical review of DT technology 

applied to industrial mechanical forming processes. Therefore, it 

is recommended that future studies apply the developed 

methodology with a focus on system automation, considering the 

dynamism of the process and physical events that may occur. 
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