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ABSTRACT 

 

Orienteering Problem (OP) fetched great attention in recent years 

because apart from the NP-hard routing problems, it is applicable 

in various applications like mobile crowd-sensing, 

manufacturing, etc. OP intends to maximize the overall price 

collected from the places covered in the itinerary within a time-

bound. In this paper, the latest improvements in NP-hard routing 

problems are discussed. Some variations of the traveling 

salesman problem (TSP), OP, and their recent solutions based on 

nature-inspired algorithms are explored. Finally, we present the 

future scope of the OP and its variants. 

 

Keywords: Traveling Salesman Problem (TSP), Orienteering 

Problem (OP), Set Orienteering Problem (SOP). 

 

 

1. INTRODUCTION 

 

Research on solving NP-hard problems has a long tradition. To 

find the solution of TSP [17] is a great deal among NP-hard 

problems. Consequently, the field of optimization problems for 

the TSP has been thoroughly explored. In the TSP, a complete 

weighted graph and a start vertex are given. The task is to find an 

itinerary starting and stopping at the given vertex with the 

minimum weight (the sum of edge-weights in the path). The TSP 

has applications in several fields, including logistics, planning, 

and microchip manufacturing. However, the stated formulation 

of the TSP forces us to visit every vertex, which may not always 

be required in other variants of TSP with the time-bound. OP is 

one of the most studied variants of TSP with some time 

constraints. 

 

The OP [21] is a mixture of the TSP and knapsack problem [38]. 

The essence of the OP is to introduce a budget to the TSP and 

pick the vertices which maximize the profit. Numerous variants 

of the OP have been proposed for application in routing and 

networking problems like solving the best route for a tourist, 

mobile crowd-sensing, etc. 

 

 

2. BACKGROUND 

 

A lot of exertion is already done in solving the NP-hard routing 

problems mainly related to TSP and OP using different Graph-

Based, Nature-Inspired based approaches, etc. Researchers are 

still searching for an efficient solution of TSP, OP, and their 

variants so that the best approximation time algorithm can be 

designed for these types of routing problems. Recently, some of 

the latest variants and their nature-inspired solution approaches 

have been suggested by researchers. A brief introduction is 

presented in sections 2 and 3. 

 

Problem Description 

The OP [21] aims to find a minimum-cost itinerary among the 

selected nodes from n nodes within a constraint; the constraint 

can differ according to the problem definition. i.e., time, energy 

consumption, etc. Fundamentally, it is a mixture of TSP and 

knapsack problems. 

Mathematical Formulation of OP can be described on a complete 

graph 𝐻 = (𝐴, 𝐵) where 𝐴 = {1,2,3. . . , 𝑛} is the number of 

nodes, and 𝐵 is the number of edges in the complete graph. Node 

1 and node 𝑛 is the origin and ending depots for the traveler 

respectively, where 𝜙𝑥 is the profit associated with node 𝑥 and 

𝜓𝑥𝑦 is 1 if the edge between node 𝑥 and node 𝑦 is selected; 

otherwise, it is 0. The order of the corresponding node 𝑖 is 

defined by the node potential 𝑢𝑖 (𝑢𝑖 is a positive integer variable, 

and the node potential of origin depot is 1) and  𝑇𝑥𝑦 defines the 

time taken on the edge between nodes 𝑥 and 𝑦. Integer linear 

programming formulation [25] of OP can be given as:  

 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  ∑ ∑ 𝜙𝑥  𝜓𝑥𝑦

𝑛

𝑦=2

𝑛−1

𝑥=2

                 𝐸𝑞. (1) 

Subject to: 

∑ 𝜓1𝑥

𝑛

𝑥=2

= ∑ 𝜓𝑥𝑛

𝑛−1

𝑥=1

=  1                     𝐸𝑞. (2) 

 

∑ 𝜓𝑥𝑘

𝑛−1

𝑥=1

= ∑ 𝜓𝑘𝑦

𝑛

𝑦=2

≤  1    ∀𝑘 = 2, … , 𝑛 − 1         𝐸𝑞. (3) 

 

∑ ∑ 𝑇𝑥𝑦 𝜓𝑥𝑦

𝑛

𝑦=2

 

𝑛−1

𝑥=1

≤  𝑇𝑀𝑎𝑥                 𝐸𝑞. (4) 

 

Sub-tour Elimination Constraints: 

 

2 ≤ 𝑢𝑥 ≤ 𝑛         ∀𝑥 = 2, … , 𝑛         𝐸𝑞. (5) 

 

𝑢𝑥 − 𝑢𝑦 + 1 ≤ (𝑛 − 1) (1 − 𝜓𝑥𝑦 )                    

s.t.  𝑥 ≠ 𝑦, ∀𝑥, 𝑦 = 2, … , 𝑛        𝐸𝑞. (6) 

 

𝜓𝑥𝑦 ∈ {0,1}     ∀𝑥, 𝑦 = 1, … , 𝑛       𝐸𝑞. (7) 
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In the above formulation, equations (2) ensures that travelers start 

and stop at the given depots, while equation (3)  ensures that each 

node may not be visited more than once and it determines the 

flow bound also, and equation (4) ensures that the itinerary 

should be finished with the predefined time-bound (𝑇𝑀𝑎𝑥). 

Constraints (5) and (6) [31] determine that the traveler covers no 

sub-tour. Equation (7) enforces Integer constraints. 

 

Some Variants of TSP and OP 
The variations of TSP and OP has many real-life applications like 

mobile crowdsensing, arc routing problem, and tour trip design. 

In this section, we discuss some basic and some recent variants 

of TSP and OP to grasp the basic understanding of the objectives 

of these variants. 

 

 Multi Travelling Salesman Problem (mTSP):  The 

mTSP [19] is a generalization of a famous TSP problem. In 

mTSP, a set of N nodes and distance between each pair of nodes 

are given. The objective is to find out m different paths for m 

different travelers (one path for each traveler). Still, there are 

some conditions we have to follow, like the itinerary should start 

and stop at the same vertex, each in-between node should not be 

covered more than once, and the overall cost should be minimum. 

 

 Multi Depot Multiple Travelling Salesman Problem 

(MmTSP): The MmTSP [6] is a generalization of the mTSP 

problem. N vertices and distance between each pair of vertices 

are given as input. Still, the constraints are: we have to find a 

minimum cost itinerary for each traveler who starts from a 

particular assigned depot and ends the itinerary at the same depot. 

Fixed destination Multi Depot Multiple Travelling Salesman 

Problem (FD-MmTSP) [4, 6], Non-Fixed destination Multi 

Depot Multiple Travelling Salesman Problem (NFD-MmTSP) 

[4, 6], and Open Path Multi Depot Multiple Travelling Salesman 

Problem (OP-MmTSP) [4, 6] are some of the other variants of 

MmTSP that follow all the constraints of MmTSP. Still, there are 

some liberties in each of the variants, like, in FD-MmTSP, each 

traveler has to go back to the same depot after completing the 

itinerary from which they started. In NFD-MmTSP, the traveler 

can return to any depot after finishing the tour. In OP-MmTSP, 

the traveler is not bound to return to any depot after completing 

the itinerary. FD-MmTSP and NFD-MmTSP are the variants of 

the Closed Path Multi Depot multiple Travelling Salesman 

Problem (CP-MmTSP) [4, 6]. As the name suggests, each 

traveler is bound to go back to any depot after completing the 

itinerary. 

 

 Multi Departure Single Destination mTSP 

(MDmTSP):  In this variant [6] of mTSP, total numbers of 

vertices and the distance between each pair of vertices are 

provided as an input, and the essence of the problem is to find an 

optimal itinerary for m travelers who start the route from 

different depots and reach at a single depot after covering all the 

given vertices. 

 

 Single Departure Multiple Destination mTSP 

(SDmTSP):   If m travelers start the journey from a single depot 

and end at multiple destinations covering all the given nodes, it 

is called SDmTSP [6]. This problem aims to find out such an 

optimal itinerary for all the travelers (one itinerary for each 

traveler) covering all the nodes (1, 2, ...,n). 
 

 Generalized TSP (GTSP):  The aim of GTSP [33] is 

to find out the maximally profitable route within a given limit of 

time. The total number of nodes is divided into clusters which 

consist of a combination of nodes, and we have to select the 

nodes to find out the shortest path among the selected nodes by 

visiting any one node in the cluster. 

 

 Team Orienteering Problem (TOP):  TOP [9] is a 

variation of OP where we have to discover out m itinerary for m 

teams (one itinerary for each team) to collect overall maximum 

profit (score), which fulfill all the constraints like time budget 

(traversing time between each pair of vertices is predefined in the 

problem) etc. all the vertices cannot be traversed because of the 

given time budget problem. Hence, vertex selection is a critical 

task in TOP. 

 

 Orienteering Problem with Time Window (OPTW) 

and Team Orienteering Problem with Time Windows 

(TOPTW):  TOPTW [39] is an extension of OPTW [24], 

services at each node can be started only within a predefined time 

slot in OPTW, and the number of path m is assumed to be 1 in it, 

while in TOPTW, a team can start giving services within a time-

bound only, and m is greater than 1. The problem intends to find 

out the optimal cost path for each team within a time budget etc. 

 

 Time-Dependent OP (TDOP): Traversing time 

between any two vertices is considered as a constant in the case 

of OP, but it is not necessary for all the possibilities, i.e., there 

may be congestion on that particular route. This problem is 

solved by TDOP [16], in which time is considered to be reliant 

on the exodus time of the prior vertex. 

 

 Clustered Orienteering Problem (COP):  COP [2] is 

a simplification of OP. In OP, the vertices are grouped in clusters, 

and the profit is linked with each group rather than each vertex. 

To get the benefit from each cluster, a traveler needs to traverse 

through all the nodes in the cluster. 

 

 Stochastic Orienteering Problem (St-OP):  In St-OP 

[23], the aim is to discover the itinerary between starting and 

ending nodes so that the overall profit from all the visited nodes 

is maximized within a budget and a given probability of failure 

with a given stochastic cost associated with edges. 

 

 Orienteering Problem with Stochastic Weights 

(OPSW):  This variant [15] of St-OP focuses on collecting the 

maximum price after completing the itinerary. Here, weights are 

coupled with travel time and travel cost; weights may be affected 

by dynamic conditions of the path, like congestion. 

 

 Probabilistic Orienteering Problem (POP):   In POP 

[1], travelers need to visit a place according to a certain 

predefined probability and get the service within the deadline so 

that total revenue is maximized within a given time-bound. 

 

 Synchronized team Orienteering Problem with 

Time Window (STOPTW):  The objective of STOPTW [49] is 

to maximize the profit associated with an asset within a given 

time budget in an environment where customers and service 

points are synchronized. There are some other constraints to 

follow, like time window and compatibility between the service 

point and customers. 

 

 Orienteering Problem with Functional Profits 

(OPFP):  OPFP [32] is another variant of OP where the location 

of the place in the itinerary and its characteristics are also 

essential to decide the price collected from it. The objective is to 
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find an itinerary where the traveler can visit the maximum 

number of places within a bound of time. 

 

 Set Orienteering Problem (SOP):  Set Orienteering 

Problem (SOP) [3] is a variant of OP, which is a mixture of TSP 

and Knapsack Problem. It is a simplification of the OP in which 

the vertices are partitioned into disjoint sets, such that their union 

is the set of all vertices. Revenue is associated with each set rather 

than each node, and visiting anyone vertex in the set gives us the 

revenue associated with the particular set. The objective of SOP 

is to collect the maximum revenue after completing the itinerary 

within the time budget. 

 

 Multi-objective Open Set Orienteering Problem 

(MOOSOP):  MOOSOP [14] is an extension of SOP. The key 

objective of MOOSOP is to search for an itinerary that fulfills 

multiple predefined goals like maximizing the customer who gets 

the service within a time budget and collecting maximum profit 

from customers. 

 

 

3. RECENT SOLUTION APPROACHES 
 

In this section, we cover the most recent solution approaches and 

their outcomes. Tables 1 and 2 show the summary of the 

approaches used by the researchers, respectively. 

 

An Algorithm to Solve the mTSP 

The algorithm to solve mTSP [34] is based on Dynamic 

Programming (DP). It consists of 5 phases: initialization with a 

random instance, solving the instance using DP, clustering the 

edges based on a predefined threshold, solving the new instance 

using DP, and updating the original solution. 

 

An Improved Partheno-Genetic Algorithm (IPGA) for the 

OPMDmTSP 

The basic idea in the suggested IPGA approach [28] is to 

implement a new selection method with the features of roulette 

and elitist sections. In addition, a complete change activity that 

presents the engendering component of the invasive weed 

optimization algorithm [30] is introduced. Experiments results 

show that IPGA is better in terms of resolution quality and 

convergence ability. 

 

Table 1. Recent algorithms to solve the variants of TSP. 

 

Ref. Problem 
Proposed 

Algorithm 
Methodology Used 

[34] mTSP 
A Dynamic 

Algorithm 

Dynamic 

Programming 

[28] OPMDmTSP 

An Improved 

Partheno- 

Genetic 

Algorithm 

The Invasive Weed 

Optimization & 

Roulette and Elitist 

Section 

[47] MDmTSP 

An Extension 

of the 

Christodes 

Heuristic 

Classical 

Christodes 

Heuristic 

[35] GTSP 

A Reinforcing 

Ant 

Colony 

System 

Traditional Ant 

Colony System 

 

An Extension of the Christofides Heuristic for the 

Generalized Multiple Depot Multiple Traveling Salesmen 

Problem (MDmTSP) 

The proposed heuristic [47] works on the classical Christofides 

heuristic with the changes only in the tree algorithm [37], where 

it adds the arcs of least weight perfect matching of nodes of the 

odd degree to MST. The tight approximation improves from 2-

approximation to (2-1)/2k-approximation, where k is the total 

sum of depots. 

 

A Reinforcing Ant Colony System (RACS) for Solving the 

GTSP 

RACS algorithm [35] utilizes the features of an exact 

exponential-time solution approach and a traditional ant colony 

system (ACS) [13, 44]. Some modifications (pheromone rule, 

etc.) are done in ACS to improve the correction policy in the 

(RACS). Findings show that ACS improves computational time 

and solution quality. 

 

An Evolutionary Algorithm for the OP 

The population-based evolutionary technique to solve OP [27] is 

focused on the characteristic that maintains the unfeasible result 

throughout the searching procedure. The algorithm exploits the 

steady-state genetic algorithm schema [46], but the divergence is 

for some generations. It uses the Tour-Improvement function for 

conversion and Add-Node and Drop-Node function for path 

tightening. 

 

A Similarity Hybrid Harmony Search (SHHS) Algorithm for 

the TOP 

The SHHS algorithm [43] is an extension of the classical 

harmony search algorithm [18] with a new method called the 

similarity process. Similarity process is used to enhance the 

quality of the results. Seven different sets of instances were 

solved using the algorithm, and it turns out that the algorithm 

provides the optimal results 276 times out of 328 instances. 

 

An Iterated Local Search (ILS) Algorithm for Solving the 

OPTW 

The ILS algorithm [22] is divided into three phases: LocalSearch, 

Perturbation, and AcceptanceCriterionuses. Some methods like 

insert, replace, swap, and 2-opt for local searching. The Shake 

method is used in Perturbation while Diversification and 

Intensification of the search are controlled by a combination of 

Perturbation and AcceptanceCriterionuses phases of the 

algorithm. 

 

An Evolution Strategy Approach to the TOPTW 

The proposed solution technique [26] is a combination of 

evolution strategy (ES) [7, 40] and constructive heuristic; it uses 

the ruin and recreates procedure to generate an offspring result, 

where some nodes are removed from an exigent result and added 

back in the itinerary until the complete result is found. 

 

A Fast solution method for the TDOP 

Verbeeck et al. proposed an algorithm [45] to solve TDOP in 

which time duration between two vertices depends on the first 

vertex's leaving time. The basic idea of the algorithm is to use the 

properties of Ant-Colony optimization with a Time-Dependent 

local search algorithm operational with local evaluation matric. 

 

A Hybrid Heuristic Algorithm to solve COP 

The HHA algorithm [48] to solve COP is a blend of an Adaptive 

Large Neighborhood Search (ALNS) [36] and an efficient split 

method [5]. The features of these two components are helpful to 
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explore an ample search space and direct representation to find 

an itinerary. In the case of only one traveler, the hybrid heuristic 

algorithm provides the 38 new best results, and it also ends the 

optimal results in all the tested cases. 

 

An Adaptive Method for the St-OP 

In the proposed strategy [42], a path tree is generated so that it 

has a higher skipping possibility if there are branches at vertex-

time states; as a result, a new sequence of nodes is allowed into 

the solution. It is shown that the proposed solution approach is 

more effective in the case of collecting rewards even if the 

branches are limited to control evaluation time. 

 

Table 2. Recent algorithms to solve the variants of OP. 

 

Ref. Problem 
Proposed 

Algorithm 
Methodology Used 

[27] OP 

An 

Evolutionary 

Algorithm 

Population-Based 

Evolutionary 

Algorithm 

[43] TDOP 

A Similarity 

Hybrid 

Harmony 

Search 

Algorithm 

Harmony Search 

Algorithm 

[22] OPTW 

An Iterated 

Local Search 

(ILS) Algorithm 

Local Search 

Algorithm 

[26] TOPTW 

An Evolution 

Strategy 

Approach 

Evolution Strategy 

& Constructive 

Heuristic 

[45] TDOP 
A Fast Solution 

Method 

Ant-Colony 

Optimization & 

Local 

Search Algorithm 

[48] COP 

A Hybrid 

Heuristic 

Algorithm 

An Adaptive Large 

Neighborhood 

Search & A Split 

Method 

[42] St-OP 
An Adaptive 

Method 

Constrained Markov 

Decision Process 

[41] OPSW 

Two-stage 

Robust 

Optimization 

Two Stage 

Optimization Model 

[11] POP 
A Tabu Search 

Algorithm 

Tabu Search & 

Monte Carlo 

Evaluator 

[49] STOPTW 

GRASP-ILP 

and Set Cover 

Hybrid 

Heuristic 

Local Search 

Algorithm & 

Randomized 

Adaptive Search 

Procedure 

[32] OPFP 
Ant Colony 

Optimization 

Ant-Colony 

Optimization 

[8] SOP 

A Biased 

Random Key 

Generator 

Algorithm 

Genetic Algorithm 

[14] MOOSOP 
A Hybrid 

Algorithm 

Pareto Evolutionary 

Algorithm & 

Genetic Algorithm 

 

Two-stage Robust Optimization for the OPSW 

In this approach, a two-stage optimization model [41] is 

proposed, with fewer variables and constraints than a one-stage 

optimization model, so it will be easier to solve using the MILP 

solver (IBM CPLEX, etc.). Results show that it is 900+ faster 

than a static approach to solve OPSW. 

 

A Tabu Search Algorithm for the POP 

The Tabu Search [11] to solve POP is a combination of 

traditional Tabu search [20] and Monte Carlo examining target 

objective evaluator [10]. The selection of nodes and evaluation 

of the objective function of an itinerary is determined by a Monte 

Carlo evaluator. At the same time, A 2-opt local search heuristic 

method is used to discover a new path by deleting some non-

adjacent nodes to find out the final sequence of nodes. 

 

GRASP-ILP and Set Cover Hybrid Heuristic for the 

STOPTW 

The proposed hybrid algorithm [49] is an integration of Greedy 

Randomized Adaptive Search Procedure (GRASP) and Iterated 

Local Search (ILS) [29]. In contrast, set covering formulation is 

used for the post-optimization segment. The suggested algorithm 

has the features of variable neighborhood descent search method 

and adaptive candidate list-based insertion heuristic. Simulations 

show that the presented technique finds the optimal solution in 

the case of medium and large instances. 

 

Ant Colony Optimization for the OPFP 

ACO works on pheromone concentration; the path with a higher 

pheromone intensity is selected by the traveler. The suggested 

solution for OFPF [32] completes in two steps; in the first step, 

itinerary probing is done to choose the appropriate traveler. In the 

second step, ACO is used to improve the itinerary. 

 

Biased Random key Generator Algorithm (BRKGA) for the 

SOP 

The basic idea in BRKGA [8] is to evolve the fitness of 

chromosomes by applying insert, swap, and Mck local search 

operator. Three additional rules are taken into consideration so 

that size of the sample can be enhanced, and the resolution of the 

problem can be accelerated; also, a hash table is introduced to 

enhance the searching time during computation. 

 

An Algorithm for the Multi-Objective Open SOP 

The proposed solution approach [14] uses a combination of the 

Strength Pareto & Evolutionary Algorithm (SPEA2) [50] and the 

Nondominated Sorting Genetic Algorithm (NSGAII) [12]. An 

instance of the generalized traveling salesman is used to solve the 

Multi-Objective Open Set Orienteering Problem (MOOSOP). 

NSGAII is used for population updating, while SPEA2 is used to 

find alternative solutions for the MOOSOP model. 

 

 

4. FUTURE WORK 

 

The study of TSP and OP is a well-established area, and we have 

investigated a lot of research on their variants using different 

nature-inspired algorithms, i.e., ant colony optimization, bat 

optimization, etc., but we analyzed that only a few researchers 

have addressed the TDOP and solution of its variants using 

nature-inspired algorithms to date; therefore, the researchers can 

focus on designing and finding the solution of time-based 

variants of OP (TDOP, OPTW, etc.) and also, future examination 

endeavors should be dedicated to the improvement of fitting 

arrangement strategies for these problematic variations. 
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5. CONCLUSION 

 

In this paper, some of the most recent solution approaches are 

presented for the variants of TSP and OP (mTSP, GTSP, SOP, 

MOOSOP, etc.). The results show that the nature-inspired 

approaches provide the most optimized results to date, and are 

better than benchmarks solutions in some cases; thus, we can 

conclude that nature-based meta-heuristic algorithms are one of 

the most suitable approaches to solve NP-hard routing problems. 
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