
 

 
Abstract ─ We describe a system model for determining decision-
making strategies that is based upon the ability to perform data 
mining and pattern discovery – utilizing open source information 
from multiple information sources – to prepare for specific 
events or situations. Within this paper, we discuss the 
development of a method for determining actionable information. 
Probabilistic predictions are critical in practice on many 
decision-making applications because optimizing the user 
experience requires being able to compute the expected utilities 
of mutually exclusive pieces of content. Wireless communication 
technologies are undergoing very rapid advancements. In the 
past few years, there has been steep growth in research regarding 
the area of wireless networks in wireless domain. A natural trend 
is to integrate social networks with mobile devices. Mobile Ad 
Hoc Networks (MANETs) can extend high-capacity mobile 
communications over large areas where fixed and tethered-
mobile systems are not available. Random matrix theory is useful 
in simulating network nodes by a Wishart adjacency matrix. Our 
paper investigates the use of composite sparse random matrices 
for modeling social networks. We use eigenvectors to 
characterize activity in the social network. We extend random 
matrix application to include multi-modal communication 
channel layer modeling for other communications, such as cell 
phone, Facebook, and Twitter, etc. We used the Dijkstra 
algorithm for discovering ad hoc network node connection 
patterns in random volumes.  We use the Poisson process to 
simulate arrival and departure of social connections for unusual 
activity. The likelihood of event occurrence is based on unusual 
activity. The amount of time in system or number of 
communications is modeled. Additional metrics, such as mean 
first passage time and rate of batch or group arrival, provide 
additional indicators of unusual activity.  
 
Keywords: Social Ad Hoc Networks, Random Matrices, Poisson 
Process, Decision-making 

I. INTRODUCTION 

Almost all work on mobile ad hoc networks relies on 
simulations, which, in turn, rely on realistic models for their 
credibility. Since there is a limited amount of realistic data in 
the public domain, synthetic models for pattern generation 
must be used and the most widely used models are currently 
very simplistic, the focus being ease of implementation rather 
than soundness of foundation. Mobile networks are social 
networks after all, since humans usually carry mobile devices 
and the movement of such devices is necessarily based on 
human decisions and socialization behavior [17]. 

One of the most important aspects of cognitive radio (CR) 
is that it proposes methodologies to drastically increase 
spectrum efficiency over current capacities by adding the 
temporal component to spectrum management. One of the 
highest impact use cases is to let secondary users (those who 
receive restricted use rights from spectrum owners) access the 
unused parts of the spectrum for a given geographical space, at 
a certain time. This requires a certain level of knowledge 
about the characteristics of the communications environment 
in the geographical area of interest. If the signal types and 
communication technologies existing in the area are identified 
and determined to be spectrally, spatially or temporally 
orthogonal to secondary user signals, then it will be possible to 
let the secondary users communicate through the medium in a 
safe, reliable way with a predetermined acceptable Quality of 
Service (QoS), that is, without interfering and harming the 
primary user’s communication. Secondly, if the signal type of 
the primary user is known, alternative methodologies can be 
applied to allocate for the secondary user. For instance, if the 
primary user’s signal has the frequency hopping property, 
allocation to secondary users can be done accordingly [10]. 

Mobile Ad Hoc Networks (MANETs) can extend high-
capacity mobile communications over large areas where fixed 
and tethered-mobile systems are not available. They are 
valuable in tactical and emergency response operations where 
fixed infrastructures and pre-planned networks are impractical 
or of limited utility. As with all modern data communications, 
the user demands for capacity during these operations is ever 
increasing and MANETs are subject to the same pressures for 
capacity growth and spectrum efficiency experienced by other 
wireless network technologies. In many MANET 
implementations, the radio nodes use omni-azimuth or 
hemispherical antennas, which greatly simplify the discovery 
and network entry functions of the system. 

In Figure 1, wireless ad hoc networks are conceptually 
compared to traditional wireless cellular networks. Wireless 
multi-hop ad hoc networks are formed by a group of mobile 
users or mobile devices spread over a certain geographical 
area. We call the users or devices forming the network the 
“nodes.” The service area of the ad hoc network is the whole 
geographical area where nodes are distributed. Each node is 
equipped with a radio transmitter and receiver, which allow it 
to communicate with the other nodes. As mobile ad hoc 
networks are self-organized networks, communication in ad 
hoc network does not require a central base station [12]. 
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FIG. 1 WIRELESS AD HOC NETWORK [12] 

II. SOCIAL NETWORK INFORMATION 

MANAGEMENT 

The Internet has forever changed the way people are able 
to respond to interconnect with one another.  Consider, for 
example, a collective response to a disaster. Today, a person, 
business, or organization can create a call to action that 
generates millions of dollars worth of donations in money, 
food and even volunteer power in a matter of minutes. This 
can happen via an email, a button on a website or a YouTube 
video that goes viral. We have seen this during disastrous 
events such as Hurricane Katrina, the 2010 earthquake in Haiti 
or the recent typhoon in the Philippines [13].  

 The 2014 typhoon in the Philippines has allowed us to 
witness an exciting change in how crowdsourcing can assist in 
disaster response. Rather than sit and wait for the heads of 
organizations and governments to dictate what is needed on 
the ground, people are able to assist first responders in the 
very work of saving lives, both directly and indirectly. 
Through the use of powerful technology, people are able to 
track weather patterns that are more accurate than anything 
broadcast on the evening news. Geography buffs are able to 
use satellite imaging technology to create maps and pinpoint 
locations where people are stranded and in desperate need of 
food and water. There are even examples of people who have 
been able to locate others who were buried under debris.  This 
kind of response is a much more aggressive response to a 
disaster [13]. 

The crowdsourcing involved people from all around the 
world who viewed satellite images from space and provided 
relief agencies with their knowledge of the changes that had 
occurred on the ground after the storm passed. Officials from 
the United Nations Office for the Coordination of 
Humanitarian Affairs (OCHA) coordinated the effort to get 
volunteers to help with the aid relief. Doctors without Borders 
received updated maps generated by more than 1,000 
OpenStreetMap volunteers in 82 countries. They identified 

hospital locations, which buildings were intact and which were 
damaged, blocked roads and other key infrastructure [14]. 

Technological advances in sensing, computation, storage 
and communications are turning the near-ubiquitous mobile 
phone into a global mobile sensing device. People-centric 
sensing will help drive this trend by enabling a different way 
to sense, learn, visualize and share information about 
ourselves, friends, communities, the way we live and the 
world we live in. It juxtaposes the traditional view of mesh 
sensor networks with one in which people, carrying mobile 
devices, enable opportunistic sensing coverage [3].  

Since people-centric sensing began, content provided by 
ordinary people, so-called "citizen journalists" or individuals 
with particular agendas has been routinely posted or shared on 
Social Networks such as Twitter, YouTube, Facebook, 
MySpace or Flickr, to name but a few. This crowd sourced 
information has increasingly made it into the channels and 
services of traditional information providers such as news 
organizations. New and affordable publishing and distribution 
tools for ordinary citizens, such as social networks, blogs or 
services have made this possible. Social networks have more 
and more become an integral part of the communications mix 
for all kinds of aims, such as (political) campaigning, and 
raising awareness [6]. For example, Fox News revamped its 
newsroom for Shephard Smith reporting on breaking news, 
such as the December 2013 shooting at Arapahoe High School 
in Colorado. 

The ad hoc network is a network that consists of wireless 
mobile users only and it does not rely on any backbone 
infrastructure or special pre-use interventions. The mobile 
nodes are free to move around as long as they do not go out of 
the range of the network. In order to provide full 
interconnectivity, the nodes have two different roles. First, 
they can be either source or destination for the transferring 
data. Second, they may need to become routers for some other 
data source destination stream for situations where the source 
and the destination are not in the radio range proximity. The 
ability for users that are not in radio range to exchange data 
and information is provided via multi-hop paths over one or 
several intermediate nodes that forward the data toward the 
destination. The field of ad hoc networks continues to be very 
popular and challenging when discussing communication 
networks. The low cost and wide availability of wireless 
equipment have brought the ad hoc networks closer to the end 
user and the ever-expanding list of possible applications 
attracts even more attention. Ad hoc networks provide means 
for information sharing for a group of users. Thus, care must 
be taken that a proper model of the end-to-end communication 
is used. The absence of infrastructure and the on-the-fly 
establishment are the major reasons for the enormous number 
of applications for ad hoc networks. The possibilities begin 
with military use on the battlefield for instant soldier 
connection, and extend to rescue missions or exploration 
teams for anywhere, anytime connectivity [9]. 

The identification of organizational or command and 
control structures from social data often relies on explicit 
communication events between group members.  Missing or 
hidden communication channels may affect current search 
algorithms, resulting in a false or incomplete structure [4].  



 

III. RANDOM MATRIX THEORY 

Random matrix theory is currently a popular subject, with 
applications in many disciplines of science, engineering and 
finance [8]. In many situations, the nodes of a graph are not 
fixed but mobile. Many different types of mobility can be 
considered for the nodes, but it seems natural to allow some 
room for randomness in the mobility properties. These models 
can be used to understand properties of communication 
networks, social networks, ad-hoc networks, sensor networks 
and also the spread of infectious diseases and rumors. Even 
though these models are simple, they capture important 
characteristics of real networks [19]. 

Our example simulation environment is modeled with 32 
nodes. We use an adjacency matrix to describe how users in a 
MANET or VANET (Vehicular Ad Hoc Network) are 
connected. We simulate results with a randomly generated 
Gaussian matrix. In order to get a symmetric Wigner matrix, 
this matrix is added to its transpose and divided by two. In our 
example we use an orthogonal Gaussian matrix with elements 
distributed as N=0 on the diagonal and N=0 or 1 off the 
diagonal. 

Unlike typical wireless ad hoc networks, which focus on 
propagating collected data to a sink, social ad hoc networks 
focus on capturing network dynamics at regular intervals. We 
aim to enable the execution of distributed applications that 
depend on capturing network dynamics across large-scale, 
social ad hoc networks. Conservation of the nodes’ fixed 
energy budget is the chief concern in all design decisions, and 
necessitates that wireless communication is kept to a 
minimum. In the social settings where our applications will be 
executing, people are free to join and leave the network, and to 
move anywhere they please (i.e., make arbitrary changes in 
the network topology). These dynamic changes to network 
topology can wreak havoc on many algorithms (e.g., routing 
and leader election) that assume stable and symmetric 
connections between nodes. Slots in which the radio is 
powered up are known as active slots, in contrast to inactive or 
idle slots, where the radio is powered down. Our model uses 
simple TDMA strategy as a parameter of the number of active 
slots in a frame. This algorithm works well in moderate-traffic 
networks [7]. 

 

 
FIG. 2 WIGNER’S SEMI CIRCLE LAW  

 
Wigner originally showed that limiting eigenvalue 

distribution of simple random symmetric matrices follows a 
semi-circle distribution. When properly normalized, the curve 
looks like a semi-circle of radius 2 as shown in Fig 2. This 
distribution depicts histogram of n eigenvalues of a symmetric 

random matrix obtained by symmetrizing a matrix of random 
normals [8]. We can use this method to characterize activity in 
a social ad hoc network as discussed in next section. 

IV. NODE CONNECTIVITY 

In wireless multi-hop ad hoc networks, any node may have 
direct radio links with some other nodes in its vicinity and 
each node can, if needed, function as a relay station routing 
traffic to its final destination. Regardless of the radio 
technology used or the movement pattern of nodes, from the 
topology point of view, at any instant in time an ad-hoc 
network can be represented as a graph with a set of vertices 
consisting of the nodes of network and a set of edges 
consisting of links between the nodes. The links between 
nodes are two-way, undirected links. There is a link between 
two nodes if a signal transmitted from one node is received at 
another node above a minimum required power threshold [12]. 

Many important optimization problems can best be 
analyzed by means of a graphical network representation [21]. 
We consider the Dijkstra algorithm for shortest or minimum 
cost network path problems. We assume that each path in the 
network has a length associated with it. We would like to 
determine if there is a path that exists between one player of 
interest and another. The Dijkstra algorithm can be used to 
find the path from one node to another.  

A graph G consist of two sets V and E.  The set V is a finite, 
nonempty set of vertices.  The set E is a set of pairs of vertices 
called edges.  The notations V(G) and E(G) represents the sets 
of vertices and edges respectively, of graph G.  We also write 
G=(V,E) to represent a graph. In an undirected graph, the pair 
of vertices representing any edge is unordered.   Thus, the 
pairs (u,v) and (v,u) represent the same edge [2]. 

Graphs can be used to represent a highway structure, with 
vertices representing cities, and edges representing highway. 
The edges can then be assigned weights, which may be the 
distance between the two nodes.  The starting vertex of the 
path is referred to as the source, and the last vertex the 
destination. Cost Minimization uses the sum of edge weights 
from source to destination node. The shortest path is the 
desired output. Figure 3 shows our system flow processing 
diagram. 

 
FIG 3 SYSTEM DIAGRAM 

 

In order to generate a graph matrix, each point is assigned 
an index and a “K” square adjacency matrix is created.  Our 
algorithm is similar to Dijkstra’s shortest path algorithm [5]. 
For a given source node in the graph, the algorithm finds the 
path with lowest cost or shortest distance between that node 
and every other node.  

The solution for a single cognitive radio may be 
mathematically tractable but is of little practical use. It 
assumes that all other radios with which it will communicate 
will either reason the same solution or will be able to 



 

effectively communicate using the reasoning node’s solution. 
This, in turn, assumes all nodes are in a similar radio 
environment. However, there are many use cases where nodes 
are in differing environments and the physical layer solution 
of the network of radios must take into account the 
requirements of all nodes. For a cognitive network, the 
required solution must optimize the performance of the 
network given the constraints of multiple protocol stack layers 
in potentially diverse radio environments [20]. 

We model the degree of social interaction between two 
people using a value in the range [0 or 1]. 0 indicates no 
interaction; 1 indicates a social interaction. We use a matrix 
M, which we call Interaction Matrix, to store this information. 
The generic element m i,j represents the interaction between 
two individuals i and j. We refer to the elements of the matrix 
as the interaction indicators. The diagonal elements represent 
the relationships that an individual has with himself and are 
set, conventionally, to 0. The matrix is symmetric since, to a 
first approximation, interactions can be viewed as being 
symmetric. The first step in this two-level process is the 
generation of the social network; that is, the generation of the 
Interaction Matrix, using random distributions [17]. 

The statistical literature on modeling social networks 
assumes that there are n entities called actors and information 
about binary relations between them. Binary relations are 
represented as a matrix Y, where Yi,j is 1, if actor i is 
somehow related to j and 0 otherwise. For example, Yi,j = 1 if 
i considers j to be friend. The entities are usually represented 
as nodes and the relations as arrows between the nodes. If 
matrix Y is symmetric, then the relations are represented as 
undirected arrows. More generally Yi,j can be valued and not 
just binary, representing the strength (or value) of the 
relationship between actors i and j  [11]. 

 

 

FIG. 4 GRAPH MATRIX 

 

Random matrix techniques can also be used for finding 
costs of paths from a single source node to a single destination 
node. Similar to the traveling salesman problem [18], if the 

nodes of the graph represent cities and edge path costs 
represent driving distances between pairs of cities connected 
by a direct road, Dijkstra's algorithm can be used to find the 
shortest route between one city and all other cities We 
represent a social network using a graph, by defining 
associations with each player in the network. Figure 4 shows a 
graph with the columns representing the source node and the 
rows representing the destination node. For example, does 
user 3 talk with user 2? The answer from Dijkstra’s algorithm 
is yes: Path =  3    17    25    29     2. 

Figure 5 illustrates destination-source (backward) discovery, 
showing the shortest path found. The path is determined by 
looking for sources that can connect to the node 2 destination. 
In this example, looking at row 2 shows that the only source 
node with connection to node 2 is node 29. Then, row 29 
shows that only nodes 2 and 25 are the only sources able to 
send to 29. Since 2 is the destination goal, we investigate 25.  

 

 
FIG 5: DESTINATION BACKWARD SEARCH 

 

Figure 6 shows the source forward search. Once a node in 
the potential path repeats, the search goes to the next leaf. 
Only the first few dead ends are illustrated. Note that there is a 
path through node 18 to 25, 29 and then to 2. But this is not 
the shortest path. 

 

 
FIG 6: SOURCE FORWARD SEARCH 

 



 

 
FIG. 7 EIGENVALUES AS A FUNCTION OF SOCIAL NETWORK ACTIVITY 

 

Mobile nodes are more inclined to fail due to energy 
consumption over time. Work that has been done has 
determined that the probability that a node changes its 
behavior is dependent on time. Therefore, the revolution of 
node behaviors cannot be simply described by a Markov chain 
because of its time-dependent property.  Node behavior model 
can be modeled by a semi-Markov process, with transition 
probability of a node’s behavior becoming state j from i, and a 
distribution function of the time spent from state i to j [22]. 

Figure 7 shows the eigenvalues as a function of network 
activity. The eigenvalues can be used to characterize unusual 
activity in a social network. We show histograms for various 
levels of activity in the social network. It is interesting to note 
that the Wishart semi-circle law is reproduced in the case 
where there is 50% network activity as modeled from the 
generated random matrix data. Our simulation used 10,000 
trials. The eigenvalues are used to model unusual activity. No 
decision is ever 100% correct; however, understanding the 
effects of algorithmic decisions based upon multiple variables, 
attributes, or factors and strategies with probability 
assignments can increase the probability for the best decision 
for a particular situation. 

Digital content generation, combined with ubiquitous 
platforms, has created the “Big Data” challenge in 
understanding how to make sense of the information generated 
through multiple sources. Data can be found everywhere and 
anywhere, be of any type and be resistant to pattern detection. 
Human decision-making activities performed with data from 
disparate sources is difficult and a highly time consuming 
activity in near real time or on-demand modes. There are 
additional needs for increased information analysis 
capabilities demonstrating more accurate decisions, planning 
factors, resource allocation, risk management and information 
analysis in near real time 

Modeling and analysis of the impact of node misbehaviors 
to network connectivity of mobile ad hoc networks has been 
studied.  Node behaviors have been classified into four types: 
Full cooperative, selfish, malicious and failed. A node 
behavior model has been proposed employing a semi-Markov 
process. Mobile nodes change their behaviors according to the 
well-defined transition probability matrix and transition time 
distribution matrix [22]. 
 
 
 

 
FIG. 8 NON-ERGODIC SOCIAL NETWORK CONNECTIONS 



 

V. NON-ERGODIC SOCIAL NETWORK 

This section is about mathematical modeling and better 
understanding of one the most important fundamental 
properties in ad hoc networks, the connectivity. From a 
practical point of view, connectivity is a prerequisite to 
providing reliable applications to the users of a wireless ad hoc 
network. To achieve a fully connected ad hoc network there 
must be a path from any node to any other node. The path 
between the source and the destination may consist of one hop 
(when the source and the destination are neighbors) or several 
hops. When there is no path between at least one source-
destination pair, the network is said to be disconnected. A 
disconnected network may consist of several disconnected 
islands or clusters [12]. 

Over the past several years there has been an enormous 
interest in social networks, such as Facebook, Twitter, 
YouTube, and LinkedIn, and in various search engines. 
Concurrent with this surge of social networking, mobile 
devices such as laptops, PDAs, and cellular (smart) phones 
have been widely used. A natural trend is to integrate social 
networks with mobile devices [16]. We further realistically 
model connections between multiple layers of multi-modal ad 
hoc networks. 

One important question in social networks is who is talking 
with players of interest. Figure 8 shows a multi-model layered 
random matrix or random volume. Each matrix was generated 
as a random matrix. Figure 9 shows a histogram of the number 
of times a player in the network is communicating. This also 
can be used to model trends and unusual activity. 

 

 
FIG. 9 PLAYER CONNECTIVITY 

VI. POISSON MODELING 

From the simulation results, we extracted the distribution of 
the average degree of connectivity. The average is computed 
using a sample interval equal to 1 second [17].  

While real-world tests are crucial for understanding the 
performance of mobile network protocols, simulation provides 
an environment with specific advantages over real-world 
studies. These include repeatable scenarios, isolation of 
parameters and exploration of a variety of metrics. Repeatable 
scenarios aid in the development and refinement of networking 
protocols by allowing the protocol developer to make changes 
to the protocol and retest the protocol in the same scenario. 
This aids in deeper understanding of how the changes impact 
the performance results. Simulation also enables isolation of 
parameters. Additionally, simulation allows a wide variety of 
scenarios and network configurations to be evaluated. All of 

these characteristics are extremely difficult, if not impossible, 
with real-world experiments. Due to these benefits, simulation 
has become a popular tool for the development and study of ad 
hoc networking protocols. The vast majority of networking 
protocols proposed for ad hoc networks have been evaluated 
with some simulation tool. [15].  

 

 
FIG. 10 POISSON DISTRIBUTION 

 

It is possible to choose different distributions according to 
specific modeling requirements. For example, it is possible to 
choose a uniform distribution for the generation of 
equiprobable interaction indicators or a Poisson distribution, 
shown in Figure 10, to model a scenario where connections are 
characterized by interaction indicators that are denser around a 
given value. [17].  

Figure 11 shows our simulation results for Monte Carlo 
generated random matrices for 100 trials.  We show the 
number of players arriving, number of communication 
connections, and average time in system for a player. Unusual 
activity will be noticeable when logging performance on a 
frequent basis.  

 

 
FIG. 11A POISSON SIMULATIONS 

 
An input process is called the arrival process. Arrivals are 
called players. If more than one arrival occurs at a given 
instant, it is a group arrival. The average number of players in 
the system is: 

L = λw            (1) 
where λ is the rate of arrival and w is the average amount of 
time a player spends in the system [21]. 

 



 

 
FIG. 11B  POISSON SIMULATIONS 

 

It is interesting to note that random matrices provide a good 
source of data for modeling and simulating social networks. 
Metrics of unusual activity can be established. The Poisson 
distribution provides a good statistical framework for modeling 
the time a player spends in the network for a communication. 
The Dijkstra algorithm with random matrices provides a good 
framework for modeling if a player is communicating with 
another player of interest. Figure 12 shows an example of a 
connection or relationship graph that can be constructed from 
the simulations. 

VII. CONCLUSION 

Many decisions are never 100% correct. However, 
understanding the effects of algorithmic decisions based upon 
multiple variables, attributes, or factors and strategies with 
probability assignments can increase the probability for the 
best decision for a particular situation or event. We modeled 
open-source discovery and data mining activities to parse 
information found from disparate social networks.  

We have identified several mathematical applications for 
optimization. We calculate optimal strategies for path 
optimization, which increases the likelihood of best decision 
available. We combine a number of technologies for data 
fusion/visualization. Our solution is a multi-use application: 
course of action (COA) planning, strategies, resource 
management, risk assessment, etc.  

Automated processing techniques are needed to augment 
analysis capabilities by identifying and recognizing patterns, 
weighting them appropriately, and providing near-real-time 
objective decisions.  

We showed simulation results with composite sparse 
adjacency random matrices. Use of eigenvectors for 
characterizing activity is beneficial. We also extended random 
matrix application to include multi-modal communication 
channel layer modeling for other communications, such as cell 
phone, Facebook and Twitter, etc. Random matrix theory is 
useful in simulating network nodes by a Wishart adjacency 
matrix. We used the Dijkstra algorithm for discovering ad hoc 
network node connection patterns in random volumes. Future 
work is to investigate the optimum time to generate the 
composite adjacency matrix with different arrival and 
departure rates. 

We used a Poisson Process to simulate arrival and departure 
of social connections for unusual activity. The likelihood of 
event occurrence is based on unusual activity. The amount of 
time in system or number of communications is modeled. 
Additional metrics such as mean first passage time and rate of 
batch or group arrival provide additional indicators of unusual 
activity. 
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