
Message Dissemination Algorithm for Unreliable Broadcast Networks Guaranteeing

Causal Order and Deadline Constraints

Jinho Ahn

Department of Computer Science, College of Natural Sciences

Kyonggi University

94-6 Iuidong, Yeongtonggu, Suwon Gyeonggi 443-760, Republic of Korea

e-mail: jhahn@kgu.ac.kr

Abstract—Most of existing deadline constrained causal order

broadcast algorithms force any group member to drop late

messages received before the expiration of their deadlines, but

not respecting causal order condition. However, their users

want to see as many messages as possible in their cause-effect

order within the earliest deadline among them. In this paper,

we propose a highly efficient real-time constrained causal

order broadcast algorithm to highly improve responsiveness

and minimize the number of late messages discarded.

Keywords-distributed system; realtime constraint; group

communication; broadcast; message delivery order

I. INTRODUCTION

Causal order delivery to a broadcast group is a very
important issue in the fields of sensor networks, video
conferencing, stock trading, auction sales and so on [6, 7].
This message ordering condition can be satisfied if any two
message sending events have cause-effect relation and the
same destination, their corresponding delivery events should
occur on the destination in their sending order. In order to
ensure this ordering constraint, two approaches may
generally be used as follows. First, if a group member
receives a message capable of violating the constraint, the
message delivery to the application is forced to wait for
releasing the restriction caused by its predecessors [1, 4, 5].
Second, if deadline-constrained causal order requirement
should be guaranteed, late messages, whose deadlines have
passed or whose successors already received have exceeded
their deadlines, are discarded. In the latter case, their users
want to see as many messages as possible in their cause-
effect order within the earliest deadline among them.
However, the previous deadline-constrained causal order
delivery algorithms [2, 3, 8] may not satisfy this important
requirement. In this paper, we propose a highly efficient real-
time constrained causal order broadcast algorithm to highly
improve responsiveness and minimize the number of late
messages discarded.

II. THE PROPOSED ALGORITHM

In figure 2, there is a broadcast group consisting of 4
processes, p1, p2, p3 and p4, sending 3 messages, m1, m2
and m3, to all members in order (by executing Module B-
SEND(m)), whose deadlines are deadlinem1, deadlinem2 and
deadlinem3 respectively. In the previous deadline constrained
algorithms[2, 3, 8], p3 cannot receive m1 and m2 except for

delivering m3 in this example. In order to receive as many
messages as possible before their earliest deadline like
deadlinem3, our proposed algorithm allows each member like
p1 and p2 to buffer received messages in its memory,
DLVD_Qrcvr (by executing Module B-RECV(m, deadlinem,
MVectorsndr)). If a member, p3, receives a message like m3,
from p2 in this figure, it requests m3’s sender, p2, give m3’s
predecessors, m1 and m2, to itself by sending a solicitation
message with m3’s dependency vector, MVectorrcvr, (by
executing Module SOLICIT-RECV(MVectorrcvr)). After
having obtained m1 and m2 from p2, p3 can deliver all three
messages to their corresponding application (by executing
Module RPY-RECV(MSG_Q)). In order to keep the
deadline-constrained causal order requirement, our algorithm
makes each member check deadline violation every time
interval (by executing Module CHECK-MSGS()).

Module B-SEND(m) OF Psndr

MVectorsndr[sndr] ← current time value of Psndr ;

broadcast (m, deadlinem, MVectorsndr) to

all the other members ;

Module B-RECV(m, deadlinem, MVectorsndr) OF Prcvr

if((deadlinem < current time value of Prcvr) 

(MVectorsndr[sndr]  MVectorrcvr[sndr])) then

discard message m from Prcvr ;

else if((MVectorsndr[sndr] > MVectorrcvr[sndr]) 

(i≠sndr: MVectorsndr[i]  MVectorrcvr[i])) then

i: MVectorrcvr[i] ←

max(MVectorrcvr[i], MVectorsndr[i]) ;

deliver m to its corresponding application ;

insert (m, deadlinem, MVectorsndr) into DLVD_Qrcvr

in m’s sending time order ;

call CHECK-MSGS() ;

else
insert (m, deadlinem, MVectorsndr) into RMSG_Qrcvr

in m’s sending time order ;

 send solicitation(MVectorrcvr, MVectorsndr) to Psndr ;

// Every time interval, the procedure is executed.

Module CHECK-MSGS() OF PROCESS Pp

for all e ∈ RMSG_Qp in FIFO order do

if(e.MVectorj[j] > MVectorp[j]  i≠j: e.MVectorj[i] 

MVectorp[i]) then

i:MVectorp[i]← max(MVectorp[i], e.MVectorj[i]) ;

deliver e.m to its corresponding application ;

insert e into DLVD_Qp in e.m’s sending time order ;

remove e from RMSG_Qp ;

else if(e.deadlinem = current time value of Pp) then

for all c ∈ RMSG_Qp in FIFO order st

(c.MVectork  e.MVectorj) do

i: MVectorp[i] ←

max(MVectorp[i], c.MVectork[i]) ;

deliver c.m to its corresponding application ;

insert c into DLVD_Qp in c.m’s sending time

order ;

remove c from RMSG_Qp ;

Module SOLICIT-RECV(MVectorrcvr, MVectorupper) OF

Psndr

MSG_Q ←  ;

for all e ∈ DLVD_Qsndr in FIFO order st

((i: e.MVector[i] < MVectorupper[i]) 

not(j: e.MVector[i]  MVectorrcvr[i])) do

insert e into MSG_Q in e.m’s sending time order ;

 send reply(MSG_Q) to Prcvr ;

Module RPY-RECV(MSG_Q) OF Prcvr

for all e ∈ MSG_Q in FIFO order do

i: MVectorrcvr[i] ←

max(MVectorrcvr[i], e.MVectorj[i]) ;

deliver e.m to its corresponding application ;

insert e into DLVD_Qp in e.m’s sending time order ;

remove e from RMSG_Qp ;

Figure 1. Procedures for each broadcast group member.

ACKNOWLEDGMENT

This work was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (grant number: 2012R1A1A2044660).

REFERENCES

[1] R Baldoni, "A Positive Acknowledgment Protocol for Causal
Broadcasting", IEEE Transactions on Computers, vol. 47, no.
12, pp. 1341-1350, 1998.

[2] R. Baldoni, A. Mostefaoui and M. Raynal, "Causal Delivery of
Messages with Real-Time Data in unreliable Networks", Real-Time
Systems Journal, vol. 10, no. 3, pp. 245 -262, 1996.

[3] R. Baldoni, R. Prakash, M. Raynal and M. Singhal, "Efficient -
Causal Broadcasting", Journal of Computer Systems Science and
Engineering, vol. 13, no. 5, pp. 263-270, 1998.

[4] K. Birman and T. Joseph, "Reliable Communication in the Presence
of Failures", ACM Transactions on Computer Systems, vol. 5, no. 1,
pp. 47-76, 1987.

[5] C. Kim and J. Ahn, “Causal order multicast protocol using minimal
message history information”, the 12th international conference on
Algorithms and Architectures for Parallel Processing, vol. 1, pp. 546-
559, 2012.

[6] J. Fanchon, K. Drira, S. P. Hernandez, "Abstract channels as
connectors for software components in group communication
services", Computer Science, ENC 2004. Proceedings of the Fifth
Mexican International Conference in, pp. 88-95, 2004.

[7] C. Plesca, R. Grigoras, P. Queinnec, G. Padiou, and J. Fanchon, "A
coordination-level middleware for supporting flexible consistency in
CSCW", 14th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, 2006.

[8] L. Rodrigues, R. Baldoni, E. Anceaume, and M. Raynal, “Deadline-
constrained causal order”, Third IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, pp. 234-241,
2000.

Figure 2. An example of execution of our proposed algorithm supporting its high responsiveness.

