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ABSTRACT 

In this paper we address an aspect of speaker recognition task, 
viz. unsupervised speaker turn detection. A metric based 
approach with two-pass criteria is proposed for this task.  A 
GMM-based modified Log Likelihood Ratio metric is used in 
the first pass; Bayesian Information Criterion (BIC) metric is 
used in the second pass to verify or discard the speaker turn 
points hypothesized in the first pass.  We consider two cases: 
long speaker turn segments (> 2 sec.) and short speaker turn 
segments (< 2 sec.).  We have evaluated our algorithm using 
TIMIT speech files.  Our precision results range from 85% to 
93%, recall ranges from 75% to 78%, and the F-ratio is in the 
range 80—85%.  These results are better than what has been 
reported in the literature so far. 
 
Keywords: Bayesian Information Criterion (BIC), Log 
Likelihood Ratio (LLR), speaker change detection, Speaker 
Turn Indexing, Speaker Turn Detection. 

1. INTRODUCTION 

Automatic speech and speaker recognition are beginning to 
play an increasingly important role in our daily lives. The need 
for such systems is felt in transcription, data mining, etc.  
Distinguishing the change in speaker when many persons are 
conversing is needed in applications such as 
videoconferencing, where we wish to pan the camera 
automatically towards the current speaker.  Speaker turn 
separation also finds application in data mining. 
There are two ways in which the problem of speaker turn 
separation can be addressed, i.e., metric- and model-based 
approaches.  The model-based approach requires a priori 
knowledge of number of speakers, which is not practical in 
many applications.  Hence, the metric-based approach is often 
the preferred choice. Most metric-based approaches formulate 
the problem as follows: decide whether or not a speaker change 
point exists at time ‘t’ based on processing data in neighboring 
windows of relatively small size around time `t', as shown in 
Fig. 1.  The content of these windows are usually sequences of 
feature vectors extracted from the audio signal. In Fig. 1, these 
sequences are denoted by X = {x1, x2, x3, …, xNx} and Y = {y1, 
y2, …, yNy}, where Nx, and Ny are the number of data points in 
the two windows. Let Z denote the concatenation of the 
contents of the two windows having Nz data points. The 
contents of these two windows are compared using a 
dissimilarity function. Local extrema of this dissimilarity 

function are compared to a threshold, yielding possible 
speaker-change points. 
Jitendra et al. [1] used a modified log likelihood ratio (mod 
LLR), metric to achieve reasonably robust speaker separation. 
Perrine et al. [2] used a two-pass, where in the first pass 
speaker turn points are hypothesized using a generalized 
likelihood ratio distance.  The likelihoods are computed based 
on single Gaussian models used for representing the current 
analysis window. The second pass criterion uses  Bayesian 
Information Criterion (BIC) to validate or discard the potential 
speaker change candidates by the first pass criterion.  Kemp at 
al. [3] used energy based speaker segmentation technique. 
Jørgensen et al. [4] used the Kullback–Leibler metric along 
with a VQ model.  Adami et al. [5] proposed a two-speaker 
separation algorithm based on the crossing points of GLR 
distance curves plotted with respect to the estimated models of 
each speakers. Segmentation algorithms based on distance 
between two consecutive parts of speech signal have been 
investigated in [6]--[8].  A segmentation algorithm based on 
BIC is presented in [9] but require long speech segments.  
Our proposed method combines the advantageous features of 
the various segmentation techniques to improve performance. 
Our approach is similar to the one used in [2].  But, unlike in 
[2],  we have used a modified Log Likelihood Ratio instead of 
GLR and a GMM model instead of single Gaussian 
approximation for each analysis window.  These have led to 
much better performance.  
Our paper is organized as follows: Section 2 summarizes the 
likelihood based metric dissimilarity measures. Section 3 
presents the proposed criterion. Section 4 explains the 
experimental setup. Section 5 shows the results. Section 6 
shows the conclusions. 

2.  METRIC DISSIMILARITY MEASURES 

In general, all metric-based approaches use hypothesis testing 
to decide whether or not there is a speaker change.   H0 is the 
null hypothesis, i.e., no speaker change, whereas H1 is the 
alternative hypothesis, i.e., speaker change exists. 
      Z 
 
 
 
 
 
Figure 1. Analysis windows for metric dissimilarity 
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2.1  Generalized Likelihood Ratio (GLR) Distance 
 
The Generalized Likelihood Ratio (GLR) tests the H0 and H1 
hypotheses based on the ratio of the likelihoods in favor of 
each hypothesis. The likelihood L0 for H0 hypothesis is the 
probability that all the acoustic features are in Z given the 
model λz. 
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The alternative hypothesis H1 will be true when X and Y come 
from different speakers and hence from different GMM 
models. That is, X is from λx whereas Y is from λy. As a result 
likelihood L1 for H1 is given by: 
                                                              
       (3) 
 
 
The ratio of the likelihoods of the two hypotheses is then: 
 
       (4) 
                        
               (5)
           
where λx, λy, and λz are the GMM models for X, Y, and Z 
respectively.  
 
Since the log of the ratio is taken, GLR is also known as the 
Log Likelihood Ratio (LLR) in most literature. 
This computation is to be carried for each analysis window.   
Duration of X and Y is typically 1 sec. and a new Z is shifted 
by the desired resolution of finding potential change points. 
Finally, the candidate speaker change points will be the 
locations of the local maxima of the GLR distance curve 
compared to a certain threshold. The threshold is entirely 
experimental. The difficulty of the problem lies in finding 
global optimum for the threshold. 
 
2.2 Bayesian Information Criteria (BIC) 
 
The BIC procedure is entirely based on the log likelihood ratio 
except that the BIC is a likelihood criterion penalized by the 
model complexity. Considering Fig. 1 and L(Z/M) the 
likelihood of Z for the model M, the BIC value is determined 
by                                                                                

    
                                    (6) 

 
where m is the number of parameters of the model M and λ the 
penalty factor.  We consider the following hypothesis test for 
speaker change at time t: 

Log likelihood values Lo and L1 are computed using the same 
set of equations used for GLR Eq. (2) and (3).                  
Ignoring the variation of the mean, as it is easily biased by the 
channel condition, the maximum log likelihood ratio between 
hypothesis H0 (no speaker change) and H1 (speaker change at 
time t) is then defined by [2]: 
                                       
where, ΣZ, ΣX, and ΣY are the covariance matrices of the  
 
complete sequence, X, Y, and Z. The variation of the BIC 
value between the hypotheses is then 
 
                                                                                                (8) 
 
Notice that a penalty term λ∆k is added;  ∆k is to account for 
the difference of number of parameters and is given by 

    
1( ( 1)) log
2 zk p p p NΔ = + +  

where p is the dimension of the features vector 
 
In the decision, a negative value of ∆BIC(t) indicates that the 
individual models best fit the data Z than the combined single 
model, which means that a change of speaker occurred at time 
t.  BIC based procedures have proven to be efficient as stated 
in most literature, but computationally costly. 
 
2.3 Modified Log Likelihood Distance (Mod LLR) 
 
The hypotheses are formulated in the similar manner as the 
other two cases. The only difference is that in hypothesis H0, 
the data Z are modeled with a two-mixture GMM instead of a 
single Gaussian density. The ML estimates of the parameters of 
this GMM λ‘

z, are calculated using the EM algorithm. The log 
likelihood L’

0, in this case is calculated as  
 
       (9) 
 
Note that L’

0 ≥L0 eq(2), since a GMM can always fit the data 
better (or equally well) compared to a single Gaussian density.  
The modified LLR criterion distance dLLR is then simply the log 
likelihood ratio. 
           dLLR = L1  - L’

0                                      (10) 
 
All the local maxima of dLLR greater than certain threshold θ 
are considered to be speaker change points. It can be seen that, 
in contrast to the standard LLR(or GLR) and BIC techniques, 
all terms in this criterion are derived directly from the data, and 
thus the criterion can be expected to be robust to changing data 
conditions [2]. This criterion has simplicity of the GLR and a 
robustness of the BIC criterion.  

3.  PROPOSED METHOD 

3.1 The First Pass Criteria 
 
In the first pass criteria, a modified implementation of 
Modified Log Likelihood Ratio is used. To decide whether or 
not a speaker change point exists at tme ti (Fig 2), two 
neighboring windows of relatively small size are considered 
around each ti. The content of these windows are sequence of 
feature vectors extracted from the silence removed speech 
signal. If silence is not removed, comparison between silence 
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and speech would be performed resulting in too many insertion 
errors. 
The whole idea of modified LLR is to create equal number of 
parameters while modeling the two hypotheses. Most 
researchers have used a single Gaussian for modeling X and Y 
separately and a two-mixture GMM for modeling the union 
window Z. 

 
     

 

 

 
 
 
 
 
Figure 2. The 1st pass algorithm 
 
However, a single Gaussian model is almost always a poorer fit 
to a speech window of any length compared to a multi-mixture 
GMM. We therefore modified the implementation by using an 
n– mixture GMM to model X and Y, and a 2n–mixture GMM 
to model the union Z. This way we can still maintain balance in 
the number of parameters that needs to be estimated in both 
hypotheses while fitting the data with a better likelihood to the 
corresponding models. The only problem associated here is 
what n should be.  Experimentally we have found out that n=2 
gives the best results. The duration of X and Y being 1 sec, 
using more mixtures will result in “over-modeling”.  For each 
Xi and Yi pairs the likelihoods of H0 and H1 are computed 
using Eq. (9) (and its corresponding log values).  The distance 
at each analysis stage is computed using Eq. (10). This 
operation is carried out until end of the speech for every frame 
shift to get a good resolution of finding the change points. 
However, the mod LLR distance curve is very noisy. The curve 
is mean- and variance-normalized and a moving average filter 
is used repeatedly to low-pass filter unwanted high frequency 
variations from the curve. At this stage “strong” maxima are 
selected by comparing the difference between the maximum 
and its surrounding minima on either side. If the difference is 
greater than a threshold, then the frame corresponding to that 
maximum is hypothesized as a possible candidate for speaker 
change. 
 
3.2 The Second Pass  Criterion 
 
This stage is used for either validating or rejecting the 
candidate points hypothesized in the first pass. The BIC 
procedure is very effective when there is a larger set of 
acoustic vectors in each segment.  Let s0, s1, s2, s3, s4, s5, s6…, be 
the candidates picked up by the first pass criterion. The BIC 
metric is used in the manner described in Fig. 3 for evaluating 
whether these points represent genuine turn points.  
s0 is the starting frame of the speech. To validate that s1 is 
genuine between s0 and s2, the BIC metric in Eq. (8) is 
calculated by using X to represent acoustic features between s0 
and s1, and Y between s1 and s2.  There are two possible cases 
for the values of ∆BIC(i) computed in this fashion 

 
 
3.2.1 Case 1:  ∆BIC (i) >0 
 
If ∆BIC (i) is positive, the combined model best describes the 
data than the separate models. As a result the candidate change 
point ‘i’ is discarded. If this happens while trying to decide for 
s2 the analysis window X will be from s0 to s2 and Y will be 
from s2 to s3. This is because of the fact that the BIC procedure 
qualifies the data from s0 to s2 to come from a single speaker. 
Larger the size of the data more optimal the BIC will be.  
  
   s0       s1             s2         s3           s4                 s5           s6 
 
 

 
 
 
 
 
 
 
Figure 3. The 2nd pass algorithm 
 
3.2.2 Case 2:  ∆BIC (i) < 0 
  
In this case, the separate models best describe the data than the 
combined one. Therefore, the candidate point s1 is validated as 
one of the final change points detected. And when trying to 
decide for s2 the analysis window X will be from s1 to s2 unlike 
case 1 and Y will be from s2 to s3. 
This procedure is carried out until all the candidate points by 
the first pass are evaluated. The second pass criterion has 
proven to be robust in removing insertion errors without 
affecting much the genuine speaker change points. This 
illustrates the power of BIC for this task.  

4.  EXPERIMENTAL SETUP 

To test our approach we use different types of speech data: 
 A conversation is artificially created by concatenating 

15 sentences of 2 s on average from the TIMIT database (short 
segments). This file contains different speakers and named 
TIMIT15ptsShortSeg. These short segments model telephone 
conversation speech. Analysis windows X and Y are 1 sec. 
 A conversation is created by concatenating 8 

sentences of 9 s on average from the TIMIT database (long 
segments). This file models broadcast transmission as it has 
long segments and is named TIMIT7ptsLongSeg. Analysis 
windows X and Y are 2 sec. 
The speech signal is windowed using 30 ms duration for every 
10 ms shift. It is then parameterized with 12 MFCC 
coefficients. The addition of the ∆-coefficients (first 
derivatives) does not improve the results and increases the 
time of computation. For this reason, the ∆-coefficients were 
not used. 

Iteration 1: s1 is identified as 
speaker change point 

Iteration 2: s2 is discarded and    Indexes 
are updated (s3 becomes s2) 

Comparison is carried 
          out with the new indexes 

∆BIC < 0

∆BIC > 0

∆BIC =?

Y1 X1 

Y2 X2 

Y3 X3 
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5.  RESULTS AND PERFORMANCE 
EVALUATION 

A change detection system has two possible types of error. 
Type-I error occurs if a true change is not spotted within a 
certain window (0.5 secs in either sides of the true change, in 
our case). Type-II error occurs when a detected change does 
not correspond to a true change in the reference (false alarm) 
[4]. Type I and II errors are also referred to as precision (PRC) 
and recall (RCL), respectively, and are defined as 
  

      =  
     

Number of correctly found changesPRC
Total number of changes found

            (11) 

         
    

Number of correctly found changesRCL
Total number of correct changes

=                  (12) 

 
In order to compare the performance of different systems, the 
F-measure is often used; it is defined as  
 

  
2.0      PRC RCLF

PRC RCL
× ×

=
+  

 
The F-measure varies from 0 to 1, with a higher F-measure 
indicating better performance. Comparison with benchmark 
models is given below. 
 
1.) Results found by Perrine et al. [2] 
 

File PRC RCL F 
TIMIT(29pts) 0.759 0.595 0.67 
TIMIT(27pts) 0.630 0.607 0.62 

Table 1. Performance evaluation result of BIC based 
algorithm  used by [2] 
 

File PRC RCL F 
TIMIT(29pts) 0.793 0.676 0.73 
TIMIT(27pts) 0.815 0.667 0.73 

Table 2. Performance evaluation result of proposed by 
Perrine et al [2] 
 
2.) Results found by Jitendra et al. [1] Uses HUB-4 
1997 evaluation setup 

File PRC RCL F 
- 0.68 0.65 0.67 

Table 3. Performance evaluation result of proposed by 
Jitendra et al [1] 
 
3.) Proposed Method 

File PRC RCL F 
TIMIT(15pts) short seg 0.93 0.78 0.85 
TIMIT(7pts) long seg 0.857 0.75 0.80 
TIMIT(26pts) short seg 0.85 0.78 0.81 

Table 4. Performance evaluation result of our proposed 
method. 
 
 

6.  CONCLUSIONS 
 
We have used a metric-based approach, which has the 
advantage of not requiring a priori knowledge of number of 
speakers.  Specifically, we have used a modified LLR based 
hypothesis test where the number of parameters used to model 
the data in the two hypotheses is forced to be the same in the 
first pass. Thus, the likelihoods in these two hypotheses are 
directly comparable. We have used a BIC criterion in the 
second pass to validate or discard the candidate change points 
at the first pass. We have shown that performance improves 
significantly compared to that reported in [2] if (1) multi-
mixture Gaussian modeling is used instead of single-mixture 
Gaussian, and (2) modified LLR is used instead of GLR.  The 
usefulness and robustness of this measure was further 
illustrated with the help of experiments where the proposed 
criterion achieved better F-measure compared with most of the 
proposed criteria in previous researches as given in Tables 1, 
2, and 3. 
Currently our proposed method only works offline. However, 
many applications require an online speaker indexing systems.  
This will be part of future work. 
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