

Integration of Software Agent Technologies and Web Services

Mohammed Ketel
School of Information Technology

University of Baltimore
Baltimore, MD 21201

mketel@ubalt.edu

ABSTRACT

Web Services technology enables the automation of service

discovery, invocation, and composition. On the other hand,

Software Agents provide a distinctive capability in mediating

user goals to determine service invocations. Software Agents

are autonomous entities that can discover, invoke, compose,

and monitor services without user’s intervention. Moreover,

agents possess the ability to handle the dynamism of the Web

Services environments. Web Services and agent technologies

have different problems that limit their functionality when

applied separately. The major reason is that agents are not

compatible with the widely accepted standards of Web

Services. This paper presents a framework that provides an

integration of Web Services and Software Agents

technologies by making use of a middleware to facilitate their

interoperation.

Keywords: Web Services, SOA, Software Agents, Gateway.

1. INTRODUCTION

The Web service paradigm [1] provides the feature richness,

flexibility and scalability needed by enterprises to manage

the Service-Oriented Architecture (SOA) challenges [12, 16].

One of the essential characteristics of SOA is the idea of

loose coupling between services and clients. Loose coupling

requires that the service have a well defined interface which

is separate from the implementation [2]. In addition, loosely

coupled services provide flexibility and scalability necessary

for extended application life and reduced maintenance costs.

Thus Web services enable improved coordination amongst

multiple computing platforms, applications, and Business

partners [2, 3].

Today’s complex systems can be addressed by exploiting

software agents. Software agents represent a useful paradigm

in the development of complex distributed systems. The

feature of sociability of agents enables building systems

composed of several agents, where they interact to achieve a

common goal (cooperative agents) [4].

The W3C Web Services Architecture specification defines

software agents as, the running programs that drive web

services, both to implement them and to access them as

computational resources that act on behalf of a person or

organization [5]. This definition of an agent identifies one

of the primary motivations for implementing Multi Agent

Systems (MAS). Agents are primarily responsible for

mediating between users’ goals, and the available strategies

and plans [6].

Although web services and software agents both provide a

means for encapsulating business or application knowledge,

they differ. Agents offer multiple services that can be

processed concurrently and activated according to specified

goals [7]. Unlike Web services which provide functionality

through simple executable methods, agents that act

intelligently use knowledge to react to and act on their

environment autonomously and proactively.

This paper presents the integration of software agents and

Web services technologies. Combining both technologies

provide ease of use and reliability for any user. Some

challenges are involved in this integration. Both

technologies use different service registries, service

description languages and communication protocols.

References [8, 9] proposed a Gateway middleware that

provides appropriate transformation mechanisms without

disturbing the existing specifications of both technologies.

The importance of this approach is that it enables

integration of Software Agents and Web services without

changing their existing specifications at the cost of time

taken for translations which is negligible as compared to a

transaction.

2. WEB SERVICE PARADIGM

Web Services technologies have been endorsed by many

companies as a strategic direction in line with the general IT

Industry acceptance of service-oriented architecture (SOA).

Vendors of all the major application servers, EAI software,

packaged applications and development environments have

provided basic integrated support for Web Services [10].

Web Services are encapsulated, self-descriptive, modular,

internet applications that may be accessible by the users via

the network. Their basic purpose is to enable standardized,

uniform access to heterogeneous, distributed software,

running on different software/hardware platforms.

A service-oriented architecture (SOA) is a contractual

architecture to offer and consume software as services. There

are three entities that make up SOA [2, 12]: (1) service

providers, (2) service requestors (also known as service

consumers) and (3) service broker (registry).

- Service providers are the owners that offer services. They

define descriptions of their services and publish them in the

service registry.

- Service requestors use a find operation to locate services of

interest. The registry returns the description of each relevant

service. The requestor uses this description to invoke the

corresponding service.

– Service registry is a searchable registry providing service

descriptions. It implements a set of mechanisms to facilitate

service providers to publish their service descriptions.

Meanwhile, it also enables service clients to locate services

and get the binding information.

Interactions with a Web service take place in three modes

[12]:

– Service publication is to make the service description

available in the registry so that the service client can find it.

– Service lookup is to query the registry for a certain type of

service and then retrieve the service description.

– Service binding is to locate, contact, and invoke the service

based on the binding information in the service description.

Currently, Web services technology implements SOA by

means of standard XML-based initiatives. Three initiatives

are used in order to support interactions among Web services:

- Simple Object Access Protocol (SOAP), which enables

communication among Web services,

- Universal Description, Discovery and Integration (UDDI),

which is a registry of Web services descriptions,

- Web services Description Language (WSDL), which

provides a formal, computer-readable description of Web

services. Figure 1 illustrates the SOA paradigm graphically.

Figure 1: Standards to Define, Publish and Use Web

Services

3. SOFTWARE AGENT TECHNOLOGIES

Like Web services, software agent technologies are another

important enabler of dynamic product development. Agent-

based systems are able to solve problems that are too large

for a single-resource limited system; provide solutions

where the information is distributed; and enhance system

speed, reliability, and extensibility. There are a lot of

definitions for software agents but none universally

accepted so far. In general, a software agent can be defined

as a computational entity, which acts on behalf of others

(humans or agents). From different definitions it is possible

to summarize a list of attributes common to software agents.

Typical attributes of a software agent are [11]:

- Autonomous: Agents control both their individual state

and behavior.

- Reactive: Agents are able to perceive changes in their

environment and respond in a timely manner.

- Proactive/Goal-oriented: Agents demonstrate goal-

oriented behavior by taking initiative to meet objectives.

- Social Ability/Communication: Agents interact with other

agents (and possibly humans) via some kind of agent

communication language.

- Cooperation: An agent realizes that some goals can only

be achieved by cooperating with others.

- Learning/Adaptivity: Agents’ ability to learn from history

and to adapt to changes means flexibility and improved

performance over time.

- Rationality: Is the assumption that an agent will act in

order to achieve its goals.

- Mobility: It is sometimes desirable for an agent to change

its physical position in the network. Such an agent can

optimize its communication with another agent by

migrating to the vicinity of that other agent, which might

reduce costs and speed up interaction.

Software agents are best suited for applications that are

modular, decentralized, changeable, ill-structured and

complex. It is the application and goal in question that

determine which ones of these attributes dominate in each

case. In a typical agent several attributes together make up

the behavior of an agent.

Software agents need organizational structures that

constitute the multi-agent system [13]. They define the

comprising agents and the communication channels. This

requires services for agent registration and deregistration, a

defined address space, and location services (see section 4

for details).

4. AGENT PLATFORM

The Agent Platform is depicted in Figure 2.

Figure 2: Agent Platform

4.1. Agent Platform Structure

As proposed by FIPA Agent Management Specification [13],

the agent platform consists of the following entities:

(1) The AMS Service: the AMS (Agent Management System)

represents the authority entity in the platform. The AMS

component has the ability to perform various actions on the

agents’ life-cycle (e.g. create or kill agents) and also provides

the naming service. Each agent platform necessarily contains

one single instance of the AMS component.

(2) The DF Service: the DF (Directory Facilitator) provides a

yellow pages directory service to agents. Any agent can

publish its functionality and its services offered by

registering to the DF, while an agent that needs to use a

specific service can query the DF in order to discover an

agent that provides this service.

(3) The AC Service: the AC (Agent-Container) component is

the actual run-time environment for an agent. The Agent-

Container provides functionality regarding agents’ life-cycle

management, which can be used from the AMS to manage

the agent system.

(4) The Message Transport System: it constitutes the

communication bus of the platform. The communication

between agents is achieved by exchanging ACL (Agent

Communication Language) messages. This kind of

communication is obviously a rather abstract way of

communication and the actual exchange of messages has to

be made via means of a concrete communication protocol.

The message transport system of the platform makes use of

the SOAP [14] protocol; each ACL message is encapsulated

into a SOAP message and sent over HTTP.

All platform components are implemented as stateful web

services conforming to WSRF standards. Their functionality

is exposed by standard WSDL interfaces and the invocation

of the exposed operations is made by standard SOAP

requests and responses. Additionally, all components publish

resource properties that are representative of their state. The

AMS Service publishes two kinds of resources: (a) the

platform name and (b) the structure of the platform, which

is a list of the URIs of the instances of the Agent-Container

Service that have registered with the specific AMS, as well

as the identifiers of the agents that reside in each instance.

The resource properties of the Agent-Container Service are

(a) the name of the Agent-Container and (b) a list of the

agent identifiers that currently reside in the Agent-

Container. Finally, the DF Service exposes as a single

resource property the list of agents that have been registered

with it and a description of the services they provide.

4.2. Gateways between Agents and Web Services

There is a need of a middleware for required integration of

Software Agents and Web Services. The technological

challenge of combining conventional agents and web

services with gateways has been studied in [8]. Both

technologies have different specifications as follows [8]:

(1) Agents and Web Services use different communication

protocol, i.e. Agents use Agent Communication Language

(ACL) whereas Web Services use Simple Object Access

Protocol (SOAP).

(2) Agents and Web Services use different service

description languages, i.e. Agents use ontology named

Directory Facilitator Agent Description (DF-Agent-

Description) whereas Web Services use Web Services

Description Languages (WSDL).

(3) Agents and Web Services use different service registries,

i.e. Agents have Directory Facilitator (DF) based on FIPA

specifications, whereas Web Services use Universal

Description Discovery and Integration (UDDI) which is

based on W3C specifications.

A situation in the middle happens when there is a gateway

that permits bidirectional interaction between agents and

web services [8]. In this context, a gateway is a software

program that acts as mediator between two software

systems that use two different technologies,

WSDL+SOAP+UDDI and FIPA in this case. With

gateways, software agents and web services can remain as

independent elements and use each other transparently at

the cost of time taken for translations which is negligible as

compared to a transaction.

The Gateway [7, 8, 9] is shown in Figure 3 (see [8] for

details):

(1) The Service Discovery converter enables agents and

Web services to search for one another. Software agents can

discover Web services via UDDI registries and conversely,

Web service clients can perform searches for agents and

agent services from agent registries such as the Agent

Platform’ DF.

(2) The Service Description converter enables service

publishing among Software Agents and Web services.

Software Agents can publish services in Web Services

registries such as UDDI and Web Services can be published

in Multi Agent Systems service registries such as the Agent

Platform DF.

(3) The Communication Protocol converter component

enables service invocation among software agents and Web

services. Software agents can invoke Web services and Web

service clients can invoke software agents in Multi Agent

Systems. Specifically, the SOAP to ACL converter’ enables

Web service clients to invoke Software Agents, and the ACL

to SOAP converter enables Software Agents to invoke Web

services.

Figure 3: Middleware Conversion Service

In many situations, resources are aggregated into virtual

organizations (e.g., a site, or one or more companies that

collaborate and share resources). By placing the gateway

function in a separate middleware service, the gateway is

able to monitor resource usage on a virtual organization-scale

rather than on a consumer basis

5. AGENT IMPLEMENTATIONS OF WEB

SERVICES

Like web services, agent technologies are another important

enabler of dynamic product development. Agent-based

systems are able to solve problems that are large for a single-

resource limited system; facilitate the interconnecting and

interoperation of multiple existing legacy systems; provide

solutions where the expertise and information is distributed;

and enhance system speed, reliability, and extensibility.

Agents extend Web services in several important ways [15]:

- A Web service knows only about itself but not about its

users/clients/customers. Agents are often self-aware and can

gain awareness of other agents and their capabilities as

interactions among the agents occur.

-Web services, unlike agents, are not designed to use and

reconcile ontologies. If the client and provider of the service

happen to use different ontologies, then the result of

invoking the Web service would be incomprehensible to the

client.

-Agents are inherently communicative, whereas Web

services are passive until invoked.

- A Web service is not autonomous. Autonomy is a

characteristic of agents.

- Agents are cooperative and, by forming teams and

coalitions, can provide higher-level and more

comprehensive services.

The architecture presented here is divided into three layers:

user application layer, service coordination layer (middle

agent layer), and Web Services layer, as depicted in Figure

4. The user application layer is responsible for organizing

agents to actually perform useful activities for users. Agent-

based middle layer is required for scalable, intelligent,

dynamic service composition. Agents make use of the

semantic annotation of services capabilities to automatically

discover, compose, invoke and monitor Web services.

Figure 4: Agents in a Cooperative System

To support the architecture in which heterogeneous

components can interoperate and appear homogeneous, a

variety of agents are needed [15, 17, 18]. Agents are

grouped in two main categories [17]: agents that act on

behalf of service owners and agents that act on behalf of

service consumers. Those acting on behalf of service

owners manage the access to services. On the other side, the

agents that act on behalf of service consumers have to

locate services, and receive and present results. Different

agents are needed for each of the different components:

- User (Requestor) Agents (UA): run on the top of users’

devices whether fixed or mobile. They help the user

formulate and customize his information requests. They also

plan appropriate interactions with other agents (in the lower

layer) on the user’s behalf.

- Service Discovery Agent (SDA): it is in charge of

searching in the Semantic Web Services repository for the

service or set of services (i.e. composition) that satisfy the

requisites established by the users.

- Composite Service Agents (CSA): their role is to trigger the

specification of the composite services and monitor their

deployment. A composite-service-agent ensures that the

appropriate component services are involved and

collaborating according to a specification.

- Broker Agent (BA): it is responsible for solving the

interoperability issues. Brokers might also function as

communication aides by managing communications among

various agents and application programs in an environment.

- Execution/Mediator agents (SEA): supervise query

execution, monitor and execute workflows. A mediator agent

is a specialized execution agent. Mediators work with brokers

to determine which resources might have relevant

information. They also decompose queries to be handled by

multiple agents, combine the partial responses obtained from

multiple resources, and translate between ontologies.

- Service Matchmaking Agents (SMA): Agent-based

matchmaking approach works by accepting requests from

requestors/ agents and returning a set of services that matches

these requests with additional information as the degree of

match for each service.

- Service Provider Agents (SPA): it acts as a service provider

representative. The entities set their preferences regarding

service execution and these are taken into account during the

negotiation process with the service consumers.

In general, software agents and Web services are two

independent computational concepts. Software agents are

autonomous, cooperative, aware, and embody diverse

knowledge and reasoning approaches. These characteristics

make agent oriented systems an ideal mechanism for

handling the today’s ever growing distributed environment

[16]. This diversity is sometimes essential in many

applications. However, problems arise through unnecessary

heterogeneity in agent construction. A practical way is to

apply agents in the conventional roles outlined above [16]. It

will be easier to keep the agents conceptually separate from

each other (could upgrade each agent independently). On the

other hand, Web services are good at integrating and

managing Internet-based enterprise interoperation, and

wrapping application logic. However they are weak in

supporting the quality of service such as autonomy and

flexibility. So, the capabilities of agents and Web services are

complementary.

6. AGENT COOPERATION

Interoperability could be achieved by the cooperation of the

software agents at different layers as depicted in Figure 4.

The semantic service discovery functionality is realized by

two different types of agents: Service Discovery Agents and

Service Matchmaking Agents. This was done for reasons of

efficiency and flexibility, as in some application domains the

matchmaking functionality may not be necessary. Similarly,

the service coordination functionality is realized by Service

Composition Agents (SCA) and Service Execution Agents

(SEA). Whenever a User Agent needs the provision of a

service, it asks the Service Discovery Agent (SDA) for

service providers that match its request. The SDA accesses

the Web Services Discovery and retrieves adequate service

descriptions. Then the SDA uses the SMA to achieve a

finer-grained, semantic correspondence between query and

service profile. If there is no provider of the requested

service, the PA invokes the SCA to create a composite

service. This service is then forwarded to the SEA, which is

in charge of orchestrating its execution. The composite plan

may include some abstract services, so the SEA may ask the

SDA on-the-fly for adequate services [18].

The SDA is usually a form of a Mobile Agent (MA). In

general, a MA is capable of roaming, finding, executing

services and delivering results to the user/agent. A typical

structure of a MA includes the following components: data

state, migration policies, communication and code. The data

state component contains the information carried by the MA

during migrations; the migration policies component

specifies the autonomous behavior of the MA. The

communication component is responsible for the MA’s

communication with other agents or network entities and

finally the code implements the MA’s autonomous behavior

with the support of the other three components. Each

component is configured according to the MA’s task.

Moreover, it should be noted that the MAS platform

provides a basic communication frame for the agents as

well as general classes with the basic functionality needed

either by stationary or by mobile agents [19].

The MA may follow several WS invocation alternatives and

these are listed below [20]:

- Poll the servers where the services are located to check

their availability

- Try to invoke the services from remote and not migrate to

the service provider.

- Migrate to the Web Service Provider (WSP) and

collaborate with the Service provider Agent (SPA).

- Migrate to the WSP and directly invoke the Web Service

(WS).

- Finally, to send clones to each WSP, instead of migrating

serially to each one. This scenario results to a parallel

invocation of WSs where each MA clone invokes one WS.

When the MA clones have been used for service invocation,

they return and deliver service results to the father MA.

After this interaction the MA clones are destroyed.

Consequently, the father MA delivers the services results to

the user/agent.

The Composite Service Agents (CSA) can benefit from the

above mentioned WS invocation used by the MA. Service

composition is an important role of the Composite Service

Agents (CSA). Web service composition is the ability to

take existing services and combine them to form new

services. Web service composition can either be static or

dynamic. In static composition, the services are

predetermined during the design of a Web process. In a

dynamic composition, the Web service that is to be deployed

is decided at run-time. Dynamic composition is more suitable

if the process has to adapt dynamically to unpredictable

changes in the environment. A composite Web service is an

aggregation of elementary and composite Web services,

which interact with each other according to a process model

[3, 21, 22]. From a user perspective, it is important to make

sure that all these operations are carried out in a transparent

way. Therefore, software agents are deemed appropriate to

achieve this transparency.

7. CONCLUSION

In Web services environments with semantically annotated

services, software agents are important entities that facilitate

user’s tasks in a transparent manner. This paper presented a

variety of software agents that cooperate at different layers to

ease/automate the users (humans or agents) tasks. It is also

known that there exists a communication gap between

software agents and Web services. This paper presented a

middleware solution for integrating both technologies

without changing their existing specifications and

implementations.

8. REFERENCES

[1] G. Alonso, F. Casati, Web Services: Concepts,

Architectures and Applications, Springer-Verlag, 2004.

[2] B. Benatallah and F. Casati (Guest Editors), “Special

Issue on Web Services,” Distributed and Parallel Databases,

Kluwer Academic Publishers, 12(2-3), September 2002.

[3] Z. Maamar, Q.Z. Sheng, B. Benatallah, “On Composite

Web Services Provisioning in an Environment of Fixed and

Mobile Computing Resources” Information Technology and

Management, Kluwer Academic Publishers, Vol 5, No 3,

2004.

[4] P. Davidsson, “Categories of Artificial Societies”,

Engineering Societies in the Agents World II, LNAI 2203,

Springer-Verlag, 2001.

[5] W3C Web Service Architecture Working Group.

http://www.w3.org/

[6] Wooldridge, Michael and Ian Dickinson. “Agents are not

(Just) Web Services: Considering BDI Agents and Web

Services.” In Proceeding of the 2005 Workshop on Service-

oriented Computing and Agent-based Engineering (SOCABE

2005), Jul 2005.

[7] Greenwood, Dominic and Monique Calisti. “Engineering

Web Service-Agent Integration” In IEEE Systems,

Cybernetics and Man Conference, October 2004.

[8] M. Shafiq, Y. Ding, and D. Fensel. “Bridging multi agent

systems and web services: Towards interoperability between

Software Agents and Semantic Web Services,” In

Proceedings of the 10th IEEE International Conference on

Enterprise Distributed Object Computing (EDOC’06), Oct.

2006.

[9] D. Greenwood, M. Lyell, A. Mallya, and H. Suguri.

“The IEEE FIPA Approach to Integrating Software Agents

and Web Services,” AAMAS’07, May 2007.

[10] M. Adacal and A. B. Benner, “Mobile Web Services: A

New Agent-Based Framework,” IEEE Internet Computing,

May 2006.

[11] M. Wooldridge, An Introduction to Multiagent

Systems, John Wiley & Sons, 2002.

[12] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed,

“Deploying and managing Web services: issues, solutions,

and directions,” The Very Large Data Bases (VLDB)

Journal, Volume 17 , Issue 3, May 2008, pp. 537 – 572.

[13] FIPA Agent Management Specification

http://www.fipa.org/specs/fipa00023

[14] Simple Object Access Protocol (SOAP), http://

www.w3.org/TR/soap/

[15] Michael N. Huhns and Larry M. Stephens, “Multiagent

Systems for Internet Applications,” in Practical Handbook

of Internet Computing, Chapter 18, Chapman Hall and CRC

Press, 2004.

[16] M. Singh, M. Huhns, Service-Oriented Computing

Semantics, Processes, Agents. Wiley, New York, 2005.

[17] Francisco García Sánchez, Rodrigo Martínez-Béjar,

Rafael Valencia-García, Jesualdo Tomás Fernández-Breis,

“Knowledge Technologies-Based Multi-Agent System for

Semantic Web Services Environments,” ICAISC 2008,

pp.1222-1233.

[18] César Cáceres, Alberto Fernández, Sascha Ossowski,

and Matteo Vasirani, “An Abstract Architecture for

Semantic Service Coordination in Agent-Based Intelligent

Peer-to-Peer Environments,” Proceedings of the 2006 ACM

symposium on Applied computing SAC’ 06, pp. 447-448.

[19] V. Baousis, E. Zavitsanos, V. Spiliopoulos, S.

Hadjiefthymiades, L. Merakos, and G. Veronis, “Wireless

Web Services Using Mobile Agents and Ontologies,”

ACS/IEEE International Conference on Pervasive Services,

June 2006.

[20] V. Baousis, V. Spiliopoulos, E. Zavitsanos, and S.

Hadjiefthymiades, “Semantic Web Services and Mobile

Agents integration for efficient Mobile Services,”

International Journal of Semantic Web and Information

Systems, January 2008, pp 1-19.

[21] L. Zeng et al, “Policy-Driven Exception-Management

for Composite Web Services,” Proceedings of the Seventh

IEEE International Conference on E-Commerce Technology

(CEC’05), 2005.

[22] M. C. Jaeger, G. Rojec-Goldmann, and G. Muhl. “QoS

Aggregation for Service Composition Using Workflow

Patterns,” In Proc. of the 8th Int. Enterprise Distributed

Object Computing (EDOC2004), September 2004.

