
A constraint-based route search system for smart phone in

attraction facilities

Takahiro Shibuya

Faculty of Science and Technology,

Tokyo University of Science,

2641 Yamazaki, Noda,Chiba, 278-8510, Japan

j7411616@ed.noda.tus.ac.jp

 and

Hayato Ohwada

Faculty of Science and Technology,

Tokyo University of Science,

2641 Yamazaki, Noda,Chiba, 278-8510, Japan

ohwada@ia.noda.tus.ac.jp

ABSTRACT

It is very difficult for us to find the minimum route to

travel in attraction facilities. A searching system for

visitors would be useful. Therefore, we constructed a

system to find route with the minimum total traveling

time. Facility visitors can employ this system on a

smart phone. The system is composed of ECLiPSe

(ECLiPSe is not a software development environment)

and Java Servlet. We concluded that our system is

useful and can greatly shorten travel time within the

facility.

Keywords: traveling salesman problem, traveling

problem in attraction facilities, smart phone, ECLiPSE,

Java Servlet,

1. INTRODUCTION

There are many attractions in popular attraction

facilities, making it difficult for visitors to find the

fastest way of moving about. A visitor picking a very

slow route may become tired from walking and

waiting, and may miss the opportunity to ride the

desired attraction.

I think that visitors can move around quickly if there is

a system to find the fastest order.

This traveling problem is similar to the traveling

salesman problem. A traveling salesman must find the

shortest possible route that visits each city exactly

once, when given a list of cities and their pairwise

distances.

Research is being conducted to solve the attraction

routing problem by applying the traveling salesman

problem. For example, research is being conducted to

propose how best to move around the "2005 World

Exposition, in Aichi, Japan." with two-opt method and

a simulated annealing method, which is a one of meta-

heuristics method to search for an approximate

solution cite.[1]

Research is also being conducted to propose how to

travel efficiently with CPLEX.[2]

However, such research has two problems. First, the

research employs a fixed waiting time and therefore is

not a realistic model. Second, we cannot actually use

these systems.

Our goal is thus to develop a realistic model and a

route search system that visitors can use on a smart

phone.

2. SUBJECT ATTRACTIONS

Subject area
We construct a system for Tokyo Disneyland in Chiba

Prefecture in Japan as an example. A visitor chooses

eight of the thirty-one attractions he/she would like to

visit. We assume that the visitor can ride all attractions

without considering service being suspended.

Location of Attraction
Figure 1 presents a map of Tokyo Disneyland, and

Table 1 lists the attraction's number, name, and

argument. The attraction's argument means the

attraction's name in the system. The shortest distance

between attractions is measured with "Kyorisoku"[10],

a map service to measure distance provided by

Mapion Co.,Ltd.(a Japanese company). When we

measure distances, we use things to be measured on

the map with Kyorisoku. We regard walking speed as

three kilometers per hour and set it for the transit time.

We assume that the attraction's entrance and exit are at

the center of the attraction and that the center point

leads to the nearest street because we cannot

determine the attraction's entrance and exit from the

map.

We adopt the data of official site in Tokyo

Disneyland[11] as the seat-load time. Actual waiting

times were published in October 2008 by Tokyo

Disneyland. We adopt holiday's and weekday's every

thirty minutes waiting times. We utilized the site

"Congestion expectation calendar in Tokyo

Disneyland"[11] to adopt waiting time.

Business hours actually differ by date, but we assumed

that Tokyo Disneyland is open from 8 a.m. to 10 p.m.

Table 1

Attraction in Tokuyo Disneyland

Figure 1. Attraction Map

3. SYSTEM OUTLINE

ECLiPSe Program
We constructed a system with ECLiPSE. Though it

often makes mistakes, the ECLiPSe we are using is

not a multi-language software development

environment comprising an integrated development

environment (IDE). ECLiPSe is a software system for

developing and deploying Constraint Programming

applications. For example, it is useful in the areas of

optimization, planning, scheduling, resource allocation,

timetabling, transport, etc. The ECLiPSe language is

largely backward-compatible with Prolog and supports

different dialects.

This system has one program to calculate the

minimum time when considering transit time, waiting

time, and seat-load time. A visitor inputs the starting

time, the attraction's name(from Table 1), and the day

of the week(weekday or holiday), and the system

outputs the minimum time, the arriving time, and the

route. The minimum time is the time from starting at

the entrance to returning to the exit(User can also

search the minimum time from starting at any

attractions to returning to any attractions).

Furthermore, the entrance and the exit are collocated

in Tokyo Disneyland.

More than two attractions and less than eight

attractions can be input to, this system, so visitors can

search for routes for from two to eight attractions.

We present the following formula to calculate the time

from the entrance to exit. (The following sign is

defined when we present a formula.)

 I : a set of attraction

T :a set of time zone

 Mij : transit time of from “attraction i ∈ I“

to “attraction j ∈ I“

 Mkg : transit time of from “attraction k ∈ I“

to exit

Mgh : transit time of from entrance to

“attraction h ∈ I”

Wit : waiting time of “attraction i ∈ I“

when time is t ∈ T

Pi : seat-load time of “attraction i ∈ I“

A : a set of branch{ (i,j) | i,j ∈ I}

The following formula illustrates the minimum time.

・Formula considering transit time, waiting time, and

seat-load time

∑
A ∈j)(i,

kgiitijgh min→M+)P+W+(M+M

We next describe the system structure. First, we

implemented the above calculation and timetable in

ECLiPSe software. This program can be executed on

an ECLiPSe terminal. The following figure depicts the

execution screen. B in Results in Fig.2 is the minimum

time, and the side of result(space - splash...) represents

the route.

Figure 2. Execution Screen With ECLiPSe

System structure
We can construct a web application with this ECLiPSe

program in two ways.

One way is to interact with Java. ECLiPSe can interact

with Java [13] using a Java-ECLiPSe interface. The

Java-ECLiPSe interface is a general-purpose tool for

interfacing ECLiPSe with Java, Sun's popular object-

oriented platform-independent programming language.

For example, it could be used to write a Java graphical

front-end for an ECLiPSe optimization program or to

interface ECLiPSe with a commercial application

written in Java.

The other way is to execute Java on the web with a

Java Servlet. A Java Servlet is a program for

dynamically generating an HTML document for a web

page with Java. We construct a dynamic web site for a

smart phone to use this function.

Figure 3 illustrate the structure of our system. The

system incorporates Apache and Tomcat; Apache is

used to build a web server, and Tomcat is used for the

Java Servlet.

First, visitor accesses the web site we made with a

smart phone. The visitor then inputs the starting time,

weekday or holiday, and the eight attractions he/she

would like to ride, and this information is passed to

the Java program, and to the ECLiPSe program. The

path that the ECLiPSe program should search for the

minimum time must be described in the Java program.

The ECLiPSE program is then run on Java and

calculates the route. The result is passed to the Java

program as a type of object; therefore, we need to

transform the object type into a string type. Because

the string information contains the extra information,

the character strings have to be split and the extra

information have to be removed with Java's method.

When the object is split, nine words are produced and

stored in a list. The first of the nine words is the

minimum route time. The remaining eight words are

the attractions' names(the argument names in Table 1)

stored in a list in the order of travel. For example, the

first word in the list indicates the first attraction to

which the visitor should travel, and the eighth word

indicates the last attraction to be traveled to.

We note that this system is for Japanese people, and so

on, the output needs to be translated into Japanese.

The translation is performed in Java. In addition, the

arrival time is also calculated in Java.

When the above process is completed, the system will

output the total time, arrival time, and minimum route.

Finally, the data is output on the web with the Java

Servlet.

Figure 3. System Structure

Figure 4. Top Screen

Interface
Our system has the following interfaces. Figure 4

depicts the top screen. This screen is displayed when a

visitor first accesses our site. The visitor then inputs

the starting time, weekday or holiday, and attractions

from this screen. After two or three seconds, the result

screen (Fig. 5) will display the starting time, arrival

time, weekday or holiday, the sum time, and the

minimum route for attractions.

4. SYSTEM VERIFICATION

In this section, we demonstrate the effectiveness of

our system.

Verification environment
The system employ hardware and software in Table 2.

Table 2

Hardware and Softwares to be used

Results

Average and minimum times:We

voluntarily select eight attractions and compare the

sum time which our system calculated with the

average time. This time is the average time to be

calculated when the same transit time, waiting time,

and seat-load time are used. (Someday we have to use

this system in Tokyo Disney Land and confirm the

accuracy of this system.)

Our system assumes that the starting time is 9

o'clock, and that the attractions selected are No.1

to No.8 in Table 1; the result is presented in

Table 3.We also output the run time. We

caluculated ten times and the average time was

applied to run time. The run time in the case of

weekday is 1.83s and in the case of holiday is

1.94s.

Discussion: Our system's time and the

average time differ by 143.1 minutes on weekdays and

158.4 minutes on holidays in theory. These time

differences illustrates the time reduction by using our

system. Our system thus has the possibility to reduce

the total travel time. Of course, a margin of error will

be introduced because these results are calculated by

simulation. However, we think that the results

provided by our system will become significant when

visitors search for the most suitable route. In

conclusion, we have demonstrated that using our

system shortens the total time.

Figure 5. Resylt Screen

Table 3. Total Time

Figure 6. Route in the sum time calculated by

our system

5. CONCLUSION

This study constructed a system for searching routes in

Tokyo Disneyland using a smart phone and presented

the system outline and interface. Additionally, we

compared the average total time with the time

calculated by our system and concluded that our

system is useful because it reduces the time required

by about 150 minutes.

Currently, we are seeking to resolve three problems in

this system. The first problem is that the number of

attractions visitor can select is fixed in our system. We

need to change fixed inputs to variable inputs. The

second problem is that our system could introduce an

increasing error. We have to recalculate the total time

en route. (Though we have already completed the

programs to solve these problems.) The last problem is

that we didn't consider the Disney Fastpass, a virtual

queuing system created by the Walt Disney Company.

Fastpass enables visitors to avoid long lines at the

attractions on which the system is installed, freeing

them to enjoy other attractions during their wait. We

completed the ECLiPSe program for calculating the

minimum time when using Fastpass and now

incorporate it into a smart phone. We will focus on the

above three improvements in the future.

6. ACKNOWLEDGE

We thank the Research Institute for Science and

Technology in Tokyo University of Science for

financial support.

7. REFERENCE

[1] Yuki M., Hisayoshi, S. & Miho, T: OR of

Amusement park － as an example of The 2005 World

Exposition, Aichi, Japan － http://www.seto.nanzan-

u.ac.jp/msie/grthesis/ms/2005/index.html

[2] Syouta, H., Yuka, H. & Daisuke, N: The minimum

route in universal studio Japan -

http://www.seto.nanzan-

u.ac.jp/msie/grthesis/ms/2007/04mm010.pdf

[3] S, Lin. & B, W, Kernighan : An Effective

Heuristic Algorithm for the Traveling-Salesman

Problem. Operations Research 1973,Vol. 21, No. 2, pp.

498-516

[4] Stutzle, T. & Hoos, H. : Ant System and local

search for the traveling salesman problem.

Evolutionary Computation, 1997., IEEE International

Conference, 1997, 309-314.

[5] Takashi, H., Takayuki, K. & Tohru, I : Solving

vehicle routing problems with soft time windows

using chaotic neurodynamics. IEICE transactions on

fundamentals of electronics, communications and

computer sciences 2006, 105(675), 17-22.

[6] Takahiro, S., Yoshihiro, H. & Koji N : Inversed

Function Delayed Network for Traveling Salesman

Problem. IEICE transactions on fundamentals of

electronics, communications and computer sciences

2007, 107(328), 55-60.

[7] Takenori, M. & Naoki, M : Comparison of

Approximate Methods for Traveling Salesman

Problem. IEICE transactions on fundamentals of

electronics, communications and computer sciences

2003, 102(625), 1-6.

[8] Eiichi, G., Etsuji, T. & Mitsuo, W : A Randomized

and Genetic Hybrid Algorithm for the Traveling

Salesman problem. Information Processing Society of

Japan, 2001, 2001(27), 61-64.

[9] Caseau, Y. & F. Laburthe. : Solving small TSPs

with constraints. In Proceedings the 14th International

Conference on Logic Programming, 1997, 316-330

[10] http://www.mapion.co.jp/route/

[11] http://www.tokyodisneyresort.co.jp/tdl/

[12] http://www15.plala.or.jp/gcap/disney/

[13]

http://www.eclipseclp.org/doc/embedding/embroot041

.html

