
VN-Sim: A Way To Keep Core Concepts in a Crowded Computing Curriculum

R. Raymond LANG

Computer Science, Xavier University of Louisiana

New Orleans, LA 70125

and

Theresa BEAUBOEUF

Computer Science, Southeastern Louisiana University

Hammond, LA 70402

ABSTRACT

Contemporary computer science curricula must accommodate a

broad array of developments important to the field. Tough

choices have to be made between introducing newer topics and

retaining fundamentals that ground the discipline as a whole.

All too frequently, understanding of low level coding and its

relation to basic hardware is sacrificed to make room for newer

material. VN-Sim, a von Neumann machine simulator,

provides a mechanism for streamlined coverage of low level

coding and hardware topics.

Keywords: von Neumann machine, simulator, machine

language, assembly language, low level programming

INTRODUCTION

The field of computer science has come a long way from

the programming of large computers with limited

memory and instruction sets to the smaller but more

powerful computers of today. Likewise, programming

applications also have changed to reflect this continuing

impact of Moore’s Law [4, 5], allowing for applications

in a wide variety of fields.

Computer science and programming have evolved

through the years, moving more from a mathematical

perspective to a development perspective, where

programmers have a wide array of tools available. In

practice, developers adapt existing packages to solve

problems. Mathematics and problem solving skills

continue to be important [1, 2], yet because of the diverse

nature of the field of computer science, some technology-

related careers paths do not rely as heavily on core

computing concepts.

Computer science education has also changed through the

years to reflect the needs of business and industry to

produce graduates who can integrate packages and put

together solutions by using already existing software.

They use languages with object libraries built in, so they

become proficient in software development environments

and in searching for solutions online. Students do learn

how to code, they learn about hardware, and they learn

about systems. However, in this age of abstraction and

code reuse, students often do not gain a fundamental

understanding of the very basics of computer science and

how hardware and software come together at a low level

to perform simple calculations. This is as important to the

computer scientist as the knowledge of atomic structure is

to the chemist or cell functionality is to the biologist.

With the VNSim package, students can interactively see

how code that they write is stored and implemented in

hardware. They can view memory contents, and they can

learn about errors that can occur in low level coding,

which eventually can cause errors in high level

programming applications. We give examples of the VN-

Sim, and how it can reinforce computer science skills for

beginning and more advanced students.

UNDERSTANDING BASIC HARDWARE

AND MEMORY

Instruction in hardware fundamentals begins with the von

Neumann model: a central processing unit (CPU) and a

memory storing both programs and data. Student

understanding of the relationship between the control unit

(CU) and the arithmetic-logic unit (ALU) is important

preparation for concepts such as data representation,

control flow, indexing, digital logic, and more.

A static description of the von Neumann architecture [3]

consists of the ubiquitous box and arrow diagram

showing the connections among the components. The

fetch-decode-execute cycle conveys how a stored-

program computer operates. To go beyond the five-

minute hand-wave of this topic, an instructor must

describe a few instruction codes, arrange them in

memory, and perform a hand execution of a program of

up to a dozen lines or so. But such a presentation risks

leaving students with the impression that a von Neumann

machine is too simple to do anything but just the sort of

programs that can be hand-traced in just a few minutes.

VN-Sim is a von Neumann simulator that can provide

convincing demonstrations of the power and scope of the

model. It supports a better understanding of stored-

program computers by allowing direct manipulation and

observation of a working example of the von Neumann

architecture.

The execution of VN-Sim is governed by its instruction

set. There are instructions for clearing, loading, and

storing the ALU registers, for addition and subtraction in

the accumulator, and for incrementing and decrementing

the x-register. The branching instructions are an

unconditional jump, two jumps conditioned on the

accumulator, and one jump conditioned on the x-register.

The READ instruction stores into memory a value

provided by the user, and the WRITE instruction displays

the contents of memory to the user. HALT instructs VN-

Sim to do just that. The instruction set and the the I/O

dialogs are shown in figures 2, 3, and 4.

The opcodes are four digit decimal codes in which the

leftmost digits signify the operation, and the rightmost

digits the operand, a two-digit address in the VN-Sim’s

memory. Only some instructions require an operand. In

Figure 2, the operation codes are shown, followed by two

dashes for operations without an operand or two plusses

for operations with an operand. VN-Sim performs

absolute addressing only.

UNDERSTANDING LOW LEVEL

PROGRAMMING

A solid understanding of high-level programming

languages is grounded in a grasp of operations at the

lowest levels. VN-Sim illustrates how machine level

operations can be arranged to perform a variety of tasks.

Figure 1: VN-Sim main window. Memory addresses 0 through 5 contain

a program to add two numbers entered by the user and display the sum.

The simulator contains a built-in program to add two

values; it loads into the first six memory locations when

the “Load Sample” button is clicked (see Figure 1). To

reinforce the role of the program counter (and lay the

groundwork for services provided by an operating

system), the user must manually set the value of the PC to

the address of a program’s first instruction. The PC is

initially set to 0 on startup, but to run the sample program

more than once, the user must set it back to 0 manually.

In presenting to students, the symbolic instructions are

initially described as a convenience to the human

programmer, who must still translate the symbolic

instructions by hand to the corresponding numeric

opcodes and then enter these directly into the VN-Sim’s

memory. At this level, the student must decide what

memory locations will be used for data storage and take

care to use the correct operands when translating the

program.

To gain familiarity with the instruction set, students are

asked to modify the sample program in a variety of ways:

by changing the storage locations used by the program,

by making the program subtract instead of add, and so

forth. Students are introduced to the jump instructions by

means of a short program to read two values and output

the larger. After gaining some appreciation for directly

manipulating memory, students begin using files on the

host system to save or load the contents of a range of

memory.

Figure 2: VN-Sim Opcodes.

Figure 3: VN-Sim input.

Figure 4: VN-Sim output.

PROGRAM VERIFICATION FOR

LEARNING PROGRAMMING

VN-Sim can also be used to help beginning students

understand the concepts of programming through the use

of code verification. Here students are given some code

and the documented requirements for the code and asked

to verify that the code does what it is intended to do.

Simpler programs are given at first in order to familiarize

the students with basic coding concepts. However, more

complex code is given shortly after, with the goal of

exposing the students to high-level coding constructs,

proper documentation and coding techniques, and

problem solving. Through the verification of existing

code, beginning students can rapidly learn the basics of

coding and programming style.

CONCEPTS FOR MORE ADVANCED STUDENTS

Once students have mastered the basic skills of the VN-

Sim such as the use of registers, addressing, comparisons,

and jumps, they can begin to expand on these concepts to

learn about such things as multi-path selection or case

statements, looping constructs, function calls, and

memory management. Many of these concepts can be

illustrated in the VN-Sim, even with its limited memory,

registers, and instruction set.

Other tasks require the use of additional registers for

maintaining a stack base address and stack pointer, for

example. Students can attempt to solve certain problems

that will lead them to identify additional system resources

necessary for their implementation. Students will also

gain an understanding of techniques for working with

limited resources which will give them insight into

problems encountered in the programming of real-time

and embedded systems. This should also lead to an

appreciation for the abundance of system resources

available to programmers and systems engineers today.

INITIAL RESULTS

VN-Sim has been used thus far in two courses: (1) a

breadth-first introduction to the computing discipline

which students take prior to their first programming

course, and (2) a senior level programming languages

course. In the introductory course, VN-Sim was used to

illustrate the following concepts:

 von Neumann architecture

o the central processing unit, including the roles of

the CU and of the ALU

o a random access memory storing both programs

and data

 the fetch-decode-execute cycle

 flow of control, esp. the use of sequence, selection,

and repetition in programs

 machine language, assembly language, and the

distinction between the two

 input and output mechanisms

 the distinction between operations and operands

 low level programming of small arithmetic

operations, esp. performing operations that are not

provided in the instruction set, e.g. multiplication

 debugging and code tracing

Assessment was done by in-class exercises, out of class

homeworks, and quiz questions. Students were asked to

describe the von Neumann architecture, define key

concepts, predict the output of short programs, and to

translate from assembly code to machine code and vice

versa. Three weeks of class time was spent on this

material.

Students found the material moderately challenging, and

the grades bore this out. This was our first attempt

presenting this material in this context, so there was no

previous data to compare learning results.

In the programming languages course, students were

given an assignment to write a symbolic assembler

targeting the VN-Sim instruction set. About two thirds of

the enrolled students successfully completed the

assembler or had only minor flaws, the remaining had

major shortcomings or were not submitted. VN-Sim

supports only absolute addressing, and the students were

able to grasp the importance of relative addressing and

gain greater understanding of the flexibility provided by

relocatable code modules.

FUTURE WORK

Plans are underway to use of VN-Sim in the computer

organization course. This course combines a previous

assembly language course that some felt was obsolete

with additional concepts necessary for computer

engineering technology students. VN-Sim is ideal for

such a course as it illustrates assembly language program

concepts basic computer hardware and architecture

components. We expect students in this course will be

able to better visualize and learn about low-level

workings of the computer and to program basic tasks.

Because many students in this course are engineering

technology majors, they are not as versed in

programming as their classmates who are computer

science majors. These students should benefit from the

hands-on, virtual machine approach used by VN-Sim.

CONCLUSION

Computer science brings together many areas of science,

technology, communication, and human relations.

Computer applications today are powerful and

sophisticated, incorporating graphical user interfaces and

a variety of hardware devices and networking techniques.

When all is said and done, however, a computer is still a

simple machine. It can store data, it can add, and it can

compare two values. Every other operation is built off of

these basic abilities, so an understanding of the low-level

concepts related to basic computer hardware and

programming is essential for computer scientists.

In this paper we described the VN-Sim system and how it

can be used to enhance the education of computer science

students. It reinforces the fundamentals of hardware and

software and their interrelationship in what we call

programming. Students benefit from the hands-on

approach as they examine results of instructions and learn

how they can program their own instructions to achieve

desired results. The VN-Sim system has proven to be

both easy to learn and an effective teaching tool.

ACKNOWLEDGMENT

This research was sponsored in part by the NSF grant

CCF-0939108.

REFERENCES

[1] Beaubouef, T., Why Computer Science Students

Need Math, SIGCSE Bulletin (inroads), 34, (4), , 57-

59, 2002.

[2] Beaubouef, T., Lucas, R., Howatt, J., The Unlock

System: Enhancing Problem Solving Skills in CS1

Students, SIGCSE Bulletin (inroads), 33, (2), 43-46,

2001.

[3] Godfrey, M., Hendry, D., “The Computer as Von

Neumann Planned It,” IEEE Annals of the History of

Computing, Vol. 15, No. 1, 1993, pp. 11-21.

[4] Moore, G., “Cramming More Components Onto

Integrated Circuits,” Electronics, vol. 38, No. 8,

1965.

[5] Stokes, Jon, “Understanding Moore’s Law,” (Feb.

20, 2003), Retrieved Nov. 15, 2010,

[6] http://arstechnica.com/hardware/news/2008/09/moor

e.ars/1

http://arstechnica.com/hardware/news/2008/09/moore.ars/1
http://arstechnica.com/hardware/news/2008/09/moore.ars/1

