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Abstract—Robotics has seen an exponential growth in research 
during the past decade.  The main reason for the growth is due to 
advancement in hardware.  With all the hardware advancements, 
autonomous mobile robots have become a very important topic.  
The number of applications for autonomous robots is continuing 
to grow.  This paper examines how to map the surrounding 
environment in a building using fuzzy logic.   A fuzzy inference 
system is developed which examines a small local area and 
continuously assemblies a global map of the environment.  We 
have classified fifteen probable relative local locations and 
through a random exploration of the environment a complete 
global map is created.  This paper will explain the fuzzy system 
and show how the space is mapped to a visual map along with a 
mathematical graph.  Graph theory can later be applied to the 
environmental graph the system creates to determine shortest 
path and additional navigation in the environment. 
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I.  INTRODUCTION 
Robotics has always been a popular research area.  In recent 

years, the research area has seen exponential growth.  The 
growth is due in part to the essential underlining hardware 
advancing, e.g. high-speed wireless communication, ad-hoc 
network algorithms, low power CPUs, GPS systems and etc.  
Another reason for growth in the area is due to the limitless 
potential applications.  This research paper looks at how to 
improve intelligence in autonomous mobile robots. 

 
An important aspect of autonomous mobile robots is the 

ability to have precise navigation in the robotic systems.  
Navigation in autonomous systems is a non-trivial task 
depending on the application. Some applications for 
autonomous robots include: land mine detection, exploration 
of landscapes such as Mars, urban vehicle navigation, maze 
solving contests in academia, and household tasks such as 
vacuum cleaning and lawn mowing.  Each of these 
applications has their own difficulties in implementation.  
Some applications require extremely rudimentary intelligence 
while other will require advanced artificial intelligence.  
Autonomous lawn mowing, for example, only requires a set of 
boundaries as a group of GPS coordinates or underground land 
markers.  Other applications require large amount of 

environmental data, as in the exploration of Mars, due to the 
number unknown conditions. 

 
Our paper develops a fuzzy inference system (FIS) for 

autonomous applications.  This paper examines the 
environmental mapping required in autonomous robots used in 
a search and rescue scenario.  One possible example of a 
search and rescue application includes firefighters needing 
data about a building that is on fire.  Since a burning building 
is a dangerous situation, autonomous robots can provide an 
additional layer of safety to the rescue workers.  The robots 
could be placed inside a building through any windows or 
doorways.  The robots will have to quickly create a floor plan 
of the building to wirelessly transmit to rescue workers outside 
the building.  Given this scenario, the robot may not be able to 
rely on computer vision based on visual obstacles, so ultra-
sonic sensors to measure wall distance are used in this paper. 

II. PREVIOUS RESEARCH 
The problem of environmental mapping is not new.  Many 

researchers have looked into determining how to accurately 
map the environment.  Two of the main difficulties of 
environmental mapping are how to efficiently scan the entire 
surface area of the environment and how to account for the 
physical limitations of the physical systems.  The physical 
system, the robot, is made up of many mechanical parts and 
electrical components.  The mechanical components result in 
large accumulating errors.  The robot is designed to move 
forward, backwards, turn clockwise and turn counterclockwise.  
Ideally these movements will be precise and have no variations 
over time.  Unfortunately, the mechanical components are not 
ideal.  The motors that drive the robot wheels will have many 
variations over time.  The motors may slip or each motor have 
slightly different characteristics resulting in the wheels 
spinning differently relative to the other wheels.  The surface 
the wheels lay on will also lead to robots movements being 
uneven.  These physical limitations result in motion drift.  
Figure 1 shows a visual example of motion drift.  The electrical 
sensors also have similar variation in their operations.  All of 
these errors lead to difficulties in accurately mapping the 
environment.       

Most of the mapping research has fallen into two different 
techniques: topological and geometrical [1,2,3].  Topological 



mapping results in a qualitative representation of the 
environment [1,3].  The physical system is not highly modeled 
resulting in non-precise mapping, but rough estimates are 
available.  Topological mapping will allow the robot to have a 
generalized representation of its location in the environment. 
For a quick breakdown of the environment, only a topological 
mapping technique is important.  Topological data allows for 
enough information for navigation and waypoint marking.  
Topological mapping is commonly represented as a set of 
graphs.  Geometrical techniques, on the other hand, are 
concerned with producing a precise representation of the 
environment [2].  Geometrical techniques will take into 
account the physical system in more detail than the topological 
techniques.   

 
The papers by Kuipers [1] and Thrun [3] provide some 

insight into current topological mapping techniques. The work 
in [1] applies a model of the human cognitive map to determine 
topological information.  The focus of the paper is to develop a 
complete methodology based on sensory, control, causal, 
topological, and metrical criteria. The work done by [3] 
develops a map based on particle-filtering techniques.  Their 
research uses Bayesian and Bayes filters to provide a highly 
detailed motion model of the robot.  The downfall of [3] is that 
a large amount of computational power is needed for the robot 
to develop the map.  Our research is a topological technique 
that uses a FIS to develop a qualitative representation of the 
environment. 

III. FUZZY INFERENCE SYSTEM MODEL 
Many of the existing mapping techniques require many 

different types of sensors (laser distance sensors, GPS systems, 
tilt sensing, etc) and sensors with high sensitivity.  The goal of 
this research is to develop a robust mapping technique with a 
minimal number of sensors that can have any degree of 
sensitivity and still develop a reasonable topological map of the 
environment.  By using fuzzy logic we are able to determine 
position with great flexibility and compensate for the error due 
to the physical components of the robot.  We design the fuzzy 
logic mapping to be used on a robot similar to Figure 2.  The 
robot in Figure 2 has the following components: 3 ultra-sonic 
distance sensors (one on right side, left side, and front of the 
robot), a magnetic compass, and a gyroscope that can be used 
to realign the robot due to the motion drift.  The magnetic 
compass and gyroscope are not used in the FIS but are instead 
used to find direction and error in the motor movement.  The 
ultra-sonic sensors are sampled regularly and the data is passed 
into the FIS. 

Fuzzy logic is not new in robotic systems.  Fuzzy logic has 
previously been used in different control systems.  The work 
done in [4] used fuzzy logic to control the speed of the motors 
on the robot.  Based on the distance from the wall the fuzzy 
logic would determine how fast the motors should turn.  
Research done in [5] used a combination of neural network and 
fuzzy logic to create an Adaptive Neuro-Fuzzy Inference 
System (ANFIS).  The ANFIS system that was created was 
able to learn the maze the robot was in and determine how the 
robot should navigate.  The outputs of the ANFIS system told 
the robot to follow the wall, turn around, turn the corner, etc. 

As we have previously discussed, all robotic systems have 
noise that is present in the sensors and in the robotic motion.  
The options to dealing with these problems are to either 
develop a complex physical model for the robotic motion or 
spend a large amount of money on the most precise sensors 
available.  The purpose of using FIS is to mask the errors and 
noise in the system.  The fuzzy logic can use cheap sensors and 
generalize the distance into quantitative measurements such as 
very close, close, medium, far and very far.  The motion drift 
can also be accounted for because the sensor data is 
quantitative so the movements do not need to be highly 
predictable.  We have decided to create a FIS to make the robot 
insensitive to the errors that would occur in operation.   

The goal of the FIS in environmental mapping is to 
determine the robot’s relative location.  The interior of a 
building is very similar to a maze.  The relative location of the 
robot can be one of the following situations: the robot is in free 
open space; the robot is in a dead end; or the robot has a wall or 
walls next to it. The interior of building is broken down into a 
set of fifteen potential absolute locations inside a building.  
Figure 3 shows a breakdown of the absolute locations.  Each of 
the absolute locations will be given an index value the robot 
can use in its processing; we will refer to the absolute locations 
as the absolute location index where the index number refers to 
the numbers found in Figure 3.  We have required that the 
robot have some sense of magnetic direction to determine 
north, south, west and east used to distinguish absolute position 
index 1 from absolute position index 2.  FIS is perfect for this 
application because we are only concerned with a rough floor 
of the system.  Figure 4 shows how the FIS output will be  an 
approximation of actual locations inside a building.  The FIS 
will find the best fit from the actual environment and our 
fifteen absolute locations.  

 
Figure 2.  Robot with components. 

 
Figure 1.  Visual example of the effects of 

motion drift in robotic movement.  



A. Fuzzy Logic Rules Set and Defuzzification 
The FIS we created is based on a mamdani fuzzy model.  

The system is created with three inputs and one output.  The 
three inputs correspond to the three ultra-sonic sensors: LEFT 
SIDE, RIGHT SIDE, and FRONT SIDE.  The output that is 

created is the RELATIVE LOCATION in the maze.  The 
following settings were used: And method = min function, Or 
method = max function, Implication = min function, 
Aggregation = max function, and Defuzzification = centroid 
function.  The output of the FIS is the relative location.  The 
location is not the same as the absolute location presented in 
Figure 3.  The relative location does not have any direction 
associated with it so the location is relative to what is in front 
and to the side of the robot.  The relative location will later be 
translated to an absolute location. 

Fuzzy logic works by assigning each input with a 
membership function.  The membership function is then used 
to classify the properties of the input in to a set of quantitative 
measurements.  Figure 5 shows the membership function for 
one ultra-sonic sensor, and all three ultra-sonic sensors have the 
same membership functions.  The membership function will 
output a probability on how likely it is the robot is CLOSE to a 
wall and the probability of the robot being FAR from the wall.  

The values of determining far and close can be manipulated to 
match any scenario. 

The output of FIS is also mapped into a set of membership 
functions (Figure 6).  A set of fuzzy rules and defuzzification 
will determine which membership function the output is 
mapped into.  The relative location output can be one of eight 
choices: 1) no walls, 2) a left wall, 3) a right wall, 4) a left and 
front wall, 5) a right and front wall, 6) front wall, 7) a left, right 
and front wall, and 8) a left and right wall.   

The matching from the inputs to the output is done through 
a set of fuzzy rules.  The rules used in this research are intuitive 
but can be expanded in the future.  The rules set up which 
membership function from the inputs should give the correct 
values for the output membership functions.  The rules 
implemented in the fuzzy system are as follows:  

• IF (LEFT is FAR) and (FRONT is FAR) and (RIGHT 
is FAR) THEN (LOCATION is NOWALLS) 

• IF (LEFT is CLOSE) and (FRONT is FAR) and 
(RIGHT is FAR) THEN (LOCATION is 
LEFTWALL) 

• IF (LEFT is FAR) and (FRONT is FAR) and (RIGHT 
is CLOSE) THEN (LOCATION is LEFTWALL) 

• IF (LEFT is CLOSE) and (FRONT is CLOSE) and 
(RIGHT is FAR) THEN (LOCATION is 
LEFTFRONTWALLS) 

• IF (LEFT is FAR) and (FRONT is CLOSE) and 
(RIGHT is CLOSE) THEN (LOCATION is 
RIGHTFRONTWALLS) 

• IF (LEFT is FAR) and (FRONT is CLOSE) and 
(RIGHT is FAR) THEN (LOCATION is 
FRONTWALLS) 

• IF (LEFT is CLOSE) and (FRONT is CLOSE) and 
(RIGHT is CLOSE) THEN (LOCATION is 
LEFTFRONTRIGHTWALLS) 

• IF (LEFT is CLOSE) and (FRONT is FAR) and 
(RIGHT is CLOSE) THEN (LOCATION is 
LEFTRIGHTWALLS) 

 
Figure 3.  Types of building locations environments. The 

indexes are used in the robot software as absolute 
environmental locations. 

 
Figure 5.  Membership function for ultra-sonic inputs. 

 
Figure 6.  FIS output membership function 

 

 
Figure 4.  Fuzzy approximations in a building. (a) a 

curve wall is seen as a straight wall (b) a hallway with 
inlays is seen as a hallway. 



An visual example showing how the inputs enter the system 
and the corresponding generated output is given in Figure 7. 

IV. USING THE FUZZY LOGIC OUTPUT TO FIND LOCATION 
IN THE ENVIRONMENT 

The FIS output only gives a relative approximate 
environment location based on the current position of the robot.  
To find the absolute environment location the direction the 
robot is facing needs to be taken into account.  The robot is 
equipped with a magnetic compass to determine North, South, 
East, and West direction inside the building.   Given the 
relative output along with the robot direction heading we can 
determine the absolute position index shown in Figure 3.  For 
example, the FIS output determines the robot has a wall in front 
of it.  In order to get a detailed picture of the environment we 
need to be able to determine if the wall in front is North facing 
wall of the building (absolute position index 1), South facing 
wall (absolute position index 2), East facing wall (absolute 
position index 3), or West facing wall (absolute position index 
4).  In order to determine which absolute position index our 
robot is currently situated in, the FIS and direction are 
processed together.  A map can easily be created to determine 
the location.  Another benefit of the FIS system and the 
absolute location look up is a second level of protection against 
errors.  It is possible that a sensor may give erroneous data or 
fail to produce any data.  The wrong information passed into 
the FIS will produce incorrect interpretations.  The robot will 
determine the appropriate location it thinks it has found and if 
the location is revisited it can recalculate its absolute position 
index by using superposition of the two erroneous locations.  
For example, consider a situation where the left ultra-sonic 
sensor breaks during operation.  The robot is in absolute 
position index 10 facing south.  Given that only the right sensor 

and front sensor are functioning the fuzzy system tells the robot 
that it only has a front wall so the robot infers it is in position 
index 5. The robot then makes a 180º turn and now the fuzzy 
system determines a right wall is present.  Given that the 
location has been visited before we can sum up the given 
position indices and make a new determination that the 
absolute location is not absolute position index 5 but index 10.  
By having the direction element in our system, the robot has a 
built in redundancy element. 

 

A. Simulation  
A simulation was created to test the FIS for accuracy on a 

number of different building environments.  The simulation 
looked at creating a maze to simulate the inside of a building.  
The maze was designed to model as a grid.  The robot will 
move one grid cell at a time in north, south, east, or west 
direction.  Once the robot is in a cell the robot will sample the 
ultra-sonic sensors.  The ultra-sonic sensors were modeled in 
the simulation to resemble non-ideal operation.  At each cell 
the simulation calculated the distance to a wall for each ultra-
sonic sensor and adjusted the distance measurement by adding 
noise through a Gaussian distribution.  The simulation showed 
that the FIS was always able to accurately generate an 
environment map of the maze.  One item that was not 
examined in this research was how to efficiently explore the 
open maze surface.  The simulation explored the maze by 
randomly picking a direction to move when the robot entered a 
new cell.  The simulation resulted in a large number of the cells 
being revisited.   

Figure 8 shows one example of a maze generated for testing 
the FIS system.  The robot generated two sets of data from the 
FIS output.  The first set of data is an array that can be used to 
generate a visual map of the environment.  Figure 9 displays 
the corresponding environment map array.  Each number in the 
map array corresponds to one of the fifteen absolute position 
indices in Figure 3.  It is possible for the robot to use the map 
array to aid in navigation.  In addition to the map array, the FIS 
output was used to generate a graph of the maze.  In the graph, 
every vertex is a grid cell and the edges show the adjacent grid 
cells that are unobstructed. Figure 10 show the corresponding 
graph for the example maze in Figure 8.  With the robot 
generating a map from the FIS, graph theory can be applied to 
aid in navigation and determine characteristic of the building.  
The graph can be used to generate shortest path distance 
between any two spots in the building.  The graph can also be 
used to determine critical path analysis.  The critical path will 
determine the traveling bottlenecks in the building.   The robot 
will also be able to determine which areas are rooms and 
hallways by applying walk, path and cycle analysis. 

V. CONCLUSION 
Autonomous robots have limitless potential applications 

and many commercial applications for them have been 
developed or currently are in development. In order for many 
autonomous robots to perform their goals effectively they will 
need to be able to create maps of their environment.  There are 
many previously well established techniques, but this paper 
lays out a very flexible and robust technique.  By using fuzzy 

 
Figure 7.  FIS example. 

 
Figure 8.  Sample building example used 

in simulation 



logic, our robot is able to map out the environment with low 
precision sensors.  Another advantage of the system is that the 
mapping can still be achieved even if a sensor becomes 
disabled during the robot’s mission.  Two important 
environment maps are created.  The first map is a graphical 
representation that can easily be used by a human observer.  
The other map is a graph-based map that is well suited for the 

robot to use in navigation.  By using basic graph theory the 
robot can determine the shortest path between two positions 
and determine other analyses of the building. 
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Figure 9.  Environment map created from FIS. Numbers 

correspond to absolute location index. 

 
Figure 10.  Environment map as a graph from example maze. 


