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ABSTRACT: A macrosensor incorporating nano components towards detection of phenol compounds 
was optimized using two intelligent design models and fabricated as a Gibbs-gold hybrid phenol sensor 
using a sol-gel spin-coating technique to prepare a trapping and detecting elements (Gibbs reagent) to 
measure phenol concentrations. The limit of detection, sensitivity and response time were determined 
colorimetrically with superior results to current designs. 
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I. INTRODUCTION 
Phenol is an organic molecule commonly used 
to produce various organic compounds and 
polymers [1] and it can be released into 
environment from production of phenolic resins 
[2]. It is widely used in the automotive, 
construction, plywood, and appliance industries 
[3] and released to air and water [4-6]. Most 
methods of analysis require collecting and 
transporting the samples for further processing 
[7]. Applications of sensors because of their 
size and portability have been more successful 
for field testing of analytes than the lengthy 
laboratory testing [8]. Sensors may be in the 
form of microchips, electrodes or thin films [9]. 
The associated performance degradation in 
fabrication efficiency and parameter can be 
avoided by using intelligent models such as 
artificial neural networks (ANN) [10] and fuzzy 
logic (FL) [11]. ANN [12] and FL [13] systems 
integrate the human brain inference logic into 
their mathematical structures and utilize a 
black-box approach to explain a system input-
output relationship, yielding intelligent models. 
The FL modeling uses fuzzy sets for the input 
and output variables and minimizes the 
corresponding mapping error by adjusting the 
membership functions. The mathematical 
structures obtained by using a training data set 
are also validated by using a test data set, as 
demonstrated in various applications [14-20]. 

 
A. Gibbs Reagent as Sensing Element 
Di-halogen substituted quinine-chloroimides 
(Gibbs’ reagent) form stable complexes on 
interaction with phenol [21]. Interaction of 
Gibbs reagent with 2- and 6-positions phenol 
analogues yields a colored complex [22-23].  
B. Use of Gold as the Trapping Element 
Nanoparticles can be synthesized with ease in 
solution and the sensing can be operated at 
ambient temperature. Such advantages with 
reasonable detection capability caused interests 
in gold nanoparticles (GNPs) sensors. 
Properties of gold like chemical inertness and 
resistance to surface oxidation make GNPs 
important for use in nanotechnologie based 
devices [24-25]. GNPs show wide variation of 
optical and dielectric properties in surrounding 
media due to surface plasma resonance (SPR) 
[26-27] enables construction of simple, but 
sensitive colorimetric sensors [28-29].  
C. Sol Gel Method to Fabricate Micro Sensor 
Sol-gel derived thin films composed of 
detecting agents like Gibbs has been 
extensively investigated in colorimetric studies 
interaction of phenol with Gibbs reagent [30].  
D. Neural Networks for Design Optimization 
ANNs models can provide powerful input-
output mapping capabilities through parallel 
mathematical interconnections, feed-forward or 
recurrent networks, mathematical processing 
elements. These processes mimic neurons, with



 
 

transfer functions such as sigmoidal functions 
or purely linear functions, and training 
algorithms such as back-propagation are used in 
different fields. The feed-forward ANN 
structure with ‘s’ neurons at the hidden layer, is 
suitable for arbitrary function approximation 
and contains the model inputs (b1, …, br), the 
model output (z), the input-hidden layers weight 
coefficients (wij; i=1, …, r, j=1, …, s), the 
hidden-output layers weight coefficients (vi; 
i=1, …, s), the bias terms for each hidden 
neuron (di) and the output neuron (k), and the 
transfer functions (.)σ . Based on the ANN 
interconnection, each hidden neuron output (ni, 
i=1, …, s) can be written as 

sid
w

w
bbn i

ri

i

ri ,,1),]([
1

1 KML =+















= σ         (1) 

Then, the output of the ANN feed-forward 
structure is obtained as  
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The ANN model weight and bias coefficients 
are determined by training the initial model. 
The optimal coefficients yield a minimum 
modeling error between the ANN model and 
the a-prior known input-output data. Finally, the 
trained ANN model is tested by using a new set 
of input-output data and verifying the 
acceptable ANN model error.  

E. FL and ANFIS for Sensor Optimization 
Fuzzy logic uses intuitive natural reasoning to 
represent systems in terms of black box 
approach. Fuzzy set and logic theories define 
system variables vaguely and use degree of 
membership values for each system input and 
output, whose interrelated dynamics are stated 
by using fuzzy inference rules. There are two 
main inference types; 1) Mamdani type uses a 
fuzzy output membership function and 
determines the actual output via inference rules 
and aggregation algorithms; 2) Sugeno-Takagi 
type represents the system outputs in terms of 
constants or linear combinations of the input 
variables. Any input-output data can be mapped 
to a black-box fuzzy system via adaptive 

algorithms such as adaptive neuro- fuzzy 
inference system (ANFIS).  
The ANFIS [31] develops a fuzzy system 
model for a system in terms of fuzzy 
membership sets and inference rules, and error 
minimization algorithms, i.e., the neural 
network back-propagation algorithm with or 
without a least squares algorithm, by using a 
limited number of time-domain data. The 
adaptive algorithm is especially useful when 
there is no prior information about the input-
output dynamics or the corresponding 
membership functions. The fuzzy system model 
is then tested via a new set of input-output data 
to validate the model. The ANFIS 
implementation in Matlab software [32] is 
mainly limited to Sugeno-Takagi type, multi-
input single-output systems.  
 
II. METHOD 
A. Fabrication of Sensor 
The phenol sensor was constructed by 
dissolving different concentrations of Gibbs 
reagent in methanol. This solution was heated 
and mixed continuously with a magnetic stirrer 
for 30 minutes in a water bath, then cooled to 
room temperature. Gum Arabica was added (2 
mass %) to improve the uniformity of the film 
and to control the particle size of the sensing 
elements. This sol-gel precursor was heated at 
60 and 80°C for 2 hrs to evaporate the solvent. 
Different concentrations of gold chloride 
trihydrate and ascorbic acid were added in the 
ratio of 1:1.5 to produce (16 formulations) 
GNPs to extend the range of the sensor.  

B. Nanocharacterization of Senor 
Advanced microscopic analysis help to study 
analyzing composition, distribution of the 
sensing agent, and GNPs structure. A field 
emission scanning electron microscopy (SEM, 
JSM-6701F, JEOL) was used to determine the 
sensor thickness and surface morphology. A 
transmission electron microscopy (TEM) 
(TEM, Tecnai G2 F20 FEI) was used to 
determine the fine structure of the sensor. 
Atomic Force Microscopy (AFM, Nanoscope 
III, Veeco Cooperation) with tapping mode was 



 
 

used to determine the topography, particle size 
and 3D surface image of the sensor.  

C. Evaluation of Sensor Performance 
In order to evaluate the gold Gibbs hybrid 
(GGH) sensor performance, a colorimetric 
study was undertaken to determine the detection 
limit, response time, and sensitivity for sensor. 
Formation of the indophenols was the key 
principle for the colorimetric studies. Studies 
were conducted in a ceramic watching plate 
with 12 wells with the surface area of 
approximately 3.14 cm2. Various volumes and 
concentration of Gibbs reagent and phenol 
buffer were added to observe the color changes.  
At time intervals of 15 minutes, a photograph 
was collected with computer assisted camera 
and whole experiment was conducted over 24h.  

D. Use of Ann and Fl Frameworks 
The intelligent modeling via ANN and ANFIS 
was initiated by determining three inputs and 
one output. To obtain the relative optical 
density, 16 parameters were used, including 
concentration of Gibbs (0.025-0.25 µM), GNPs 
(0.01-0.04 mol/L) and phenol (6-50 Vol %). 
Fabrication and characterization results 
generate the training and validation input-
output data set for the intelligent models. 

III. RESULTS AND DISCUSSSION 
A. Nanostructural Study 
SEM images (Fig. 1a-d) depict spherical shape 
of GGH and a size of about 30-40 nm. GNP’s 
(Fig. 1a) form spherical aggregates and several 
wide clusters, whose uniformity increases with 
electrical activity and reaction of Gibbs with 
phenol. Fig. 1b exhibits the linear cylindrical 
nature of Gibbs coated with the GNPs and it 
forms mesh like network. The cross-sectional 
SEM images of the sol-sensor (Fig. 1c) allow 
thickness determination to be ca. 500 nm. Fig. 
1d represents topical surface of the sensor. With 
the addition of phenol to the GGH sensor, 
dissolution of porous nature was seen with the 
formation of the indophenol and loss of mesh 
work was characterized. TEM images depict the 
structural morphology with high spatial 
resolution of the film. Fig. 2a and 2b depicts the 

size of spherical GNP’s of 30-40 nm. GNP’s 
were agglomerating and possess SPR. 

 
TEM images of GGH depict linear and 
cylindrical nature of Gibbs reagent with 
uniform GNP coating. Linear nature of the 
polymer synthesized in sol method of sensor 
fabrication possess better sensitivity for the 
detection of phenol because large area of 
contact for electron exchange and indophenol 
complex formation. Loss of network structure 
of GNP’s was observed and this change is 
consistent with SEM characterization. 

 
 
 
 
 
 
 
 
 
AFM Images depicted the surface morphology 
and measured the size of the GNP’s. Fig. 3a 
showed the sparse distribution of the GNPs and 
Fig. 3b the topography of active surface at nano 
range. Size of GNP’s in this study was 
measured as ca. 30-40 nm. The GNPs were 
coated on the surface of Gibbs. Since AFM 
studies the top surface layer of sensor film, it 
depicts the actual layer which is in contact with 
phenol but it cannot reveal the inner 

  
 

  
Fig. 1a-d. SEM images of Gibbs and GGH complex 

     
 

Fig. 2a-b. TEM images of gold and GGH complex  
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composition and build up of sensor. GNPs were 
measured to have an effective diameter of 12 
nm for Au, and polydiversity (polyd) of 0.267 
for the coated particles. Analysis shows the 
mean particle size of GGH was 485 nm and the 
distribution of particles (polyd of 0.05), being 
consistent with the SEM findings. 

B.  Sensor Performance 
Colorimetric evaluation of the phenol sensor 
with a concentration of 0.05 mol of Gibbs 
reagent was studied and color changes of 
different concentrations of phenol and Gibbs 
reagent in different dilutions at different 
intervals of time was captured (data not shown). 
Initial color was developed within 1h and 
changes in intensity of color were different with 
the passage of time. The maximum optical 
density was calculated to be 255 using the 
formula,  

Optical density= Log10 (255-p)/(255-x), 

where ‘p’ stands for average back ground 
correction of well plate (where ‘x’ stands for 
mean intensity of well and measurements were 
recorded as relative optical density): Relative 
optical density= 1/optical density. 
Relative optical density (ROD) of the 12 wells 
at various intervals was calculated based upon 
the intensity of color development. Serial 
numbers from 1 to 12 were the wells and 13 to 
16 were the measurements taken for back 
ground correction and average back ground 
were calculated.  

C. Intelligent Modeling and Validation 
The intelligent models by using the neural 
network and fuzzy logic frameworks aimed to 
have black-box models, relating the three 
sensor inputs, and one sensor output. The actual 
amounts of the input variables were used during 

the simulations. The ROD output was obtained 
from 16 input parameters. 13 data points were 
used to train the intelligent models and other 3 
data points were used to verify the intelligent 
model prediction performances (Fig. 4).  

 

The Matlab Neural Network Toolbox [33] is 
used to obtain a neural network model 
approximation for the sensor ROD. A feed-
forward network with one hidden layer was 
created by using ‘newff’ command. The ‘init’ 
command properly initialized the weight 
coefficients based on the input parameter space. 
Then, the ‘train’ command achieves the neural 
network structure with the optimal weight 
coefficients.  
The corresponding neuron transfer functions 
and the number of neurons were determined 
after a number of trials. The optimal 
combination yielding the best approximation 
and prediction power was found to be ‘tansig’ 
transfer functions for the hidden layer neurons, 
a ‘purelin’ transfer function for the output layer 
neuron, and 12 neurons for the hidden layer via 
the ‘nntool’ command and its ‘Import’ and 
‘View’ options, where the input-to-hidden layer 
weight coefficients (IW{1,1}), the hidden layer 
neuron bias terms (b{1}), the hidden layer to 
output weight coefficients (LW{2,1}), and the 
output layer neuron bias term (b{2}) were 
calculated. The neural network approximation 
based prediction was in line with ROD. It was 
observed that different number of neurons and 
transfer functions yielded very different phenol 

 
Fig. 4.  The experimental input-output data for the 

intelligent model training and validation 

 
Fig. 3a-b. AFM Images of GNP and GGH complex 



 
 

 
Fig. 5. ANN and ANFIS performance comparison 

 

sensor optical density behavior, especially 
during the model validation stage.  
The Matlab Fuzzy Logic Toolbox [33] was 
used to obtain an ANFIS approximation for the 
same phenol sensor ROD data. The ANFIS 
model was trained by using the ‘anfis’ 
command. A number of trials yielded the 
optimal fuzzy system structure with 4 
membership functions on the Gibbs 
concentration input path while 2 membership 
functions on the other two input paths, the 
‘gbellmf’ type membership functions for all 
inputs, 16 fuzzy inference rules, and 16 
membership functions for the output, via 
‘plotfis’ command, and via ‘anfisedit’, 
‘Generate FIS’, ‘Structure’ commands. 

 

The corresponding ANFIS approximation and 
prediction performances indicate that the 
ANFIS model approximation was perfect while 
the ANFIS model prediction could only follow 
the typical behavior of the phenol sensor 
relative optical value with some non-negligible 
errors. Different number of membership 
functions and various membership function 
types in ANFIS training generated very distinct 
phenol sensor relative optical values, implying 
a need for more rigorous training with enhanced 
and more experimental data. Also, observing 
the ANFIS training error minimization behavior 
helped to decide the most appropriate 
membership functions for the fuzzy system.  
The ANN and ANFIS model approximation and 
prediction performances were also compared 

(Fig. 5). Although the training data 
approximations for both models were almost 
the same, the prediction performance of the 
ANN model outperformed the prediction of the 
ANFIS model. Since these two models have 
different parameters to adjust for the best 
prediction, it suggests that both intelligent 
models have promising potentials to 
characterize the phenol sensor behavior.   

IV. CONCLUSION 
A GGH sensor was successfully optimized 
using ANN and FL models for the colorimetric 
detection of phenol. The detector was utilizing 
trapping/detecting elements and derived from 
SG method. Characterization revealed the 
nanostructure of the Au-GGH complex as 
spherical shaped GNPs with size range of 30-40 
nm, which was fabricated as linear cylindrical 
polymers of Gibbs reagents coated with clusters 
of GNPs. Colorimetric studies were used to test 
the performance of the sensor. The results 
indicate that the intermediate color once formed 
is stable at least for two weeks (the length of the 
study) at room temperature with a limit of 
detection of 0.1 µ, sensitivity (36 % ROD) and 
a fast response time of (< 1 sec) were measured 
through colorimetric method. 
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