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ABSTRACT  

The target of our work dealt with the problem of extracting 
musical content or a symbolic representation of musical notes, 
commonly called musical score, from audio data of polyphonic 
music of percussive pitched instruments. We focuses on note 
events and their main characteristics: the onset (note attack 
instant) and the pitch (note name). Signal processing techniques 
based on the Constant-Q Transform (CQT) are used to create a 
time-frequency representation of the signal. The onset detection 
algorithm operates on a frame-by-frame basis and exploits a 
suitable time-frequency representation of the audio signal. The 
solution proposed consists of an onset detection algorithm based 
on Short-Time Fourier Transform (STFT), and a classification 
algorithm based on Support Vector Machine (SVM) to identify 
the note pitch. We introduce a memory based feature vector for 
classification. Moreover, to ascertain the effect of the memory, 
we evaluated the accuracy of the corresponding memoryless 
system. Finally, to validate our method, we present a collection 
of experiments using a wide number of musical pieces of 
heterogeneous styles, involving recordings of polyphonic music 
of three percussive pitched musical instruments. 

Keywords: Music transcription, Onset detection, Constant-Q 
Transform, Support Vector Machine.  

1. INTRODUCTION  
Music transcription can be considered as one of the most 
demanding activities performed by our brain; not so many 
people are able to easily transcribe a musical score starting from 
audio listening, since the success of this operation depends on 
musical abilities, as well as on the knowledge of the 
mechanisms of sounds production, of musical theory and styles, 
and finally on musical experience and practice to listening.  

The target of our work deals with the problem of extracting 
musical content or a symbolic representation of musical notes, 
commonly called musical score, from audio data of polyphonic 
music of percussive pitched instruments.  

We must discern two cases in which the behaviour of the 
automatic transcription systems is different: monophonic music, 
where notes are played one-by-one and polyphonic music, 
where two or several notes can be played simultaneously.  

Currently, automatic transcription of monophonic music is 
treated in time domain by means of zero-crossing or auto-
correlation techniques and in frequency domain by means of 

Discrete Fourier Transform (DFT) or cepstrum. With these 
techniques, an excellent accuracy level has been achieved [1, 2].  

Attempts in automatic transcription of polyphonic music have 
been much less successful; actually, the harmonic components 
of notes that simultaneously occur in polyphonic music 
significantly obfuscate automated transcription.  

The first algorithms were developed by Moorer [3] Piszczalski e 
Galler [4]. Moorer (1975) used comb filters and autocorrelation 
in order to perform transcription of very restricted duets.  

The most important works in this research field is the Ryynanen 
and Klapuri transcription system [5] and the Sonic project [6] 
developed by Marolt. 

The solution proposed in this paper consists of an onset 
detection algorithm based on Short-Time Fourier Transform 
(STFT), and a classification algorithm to identify the note pitch.  

The supervised classification method infers the correct note 
labels based only on training with tagged examples.  

Polyphonic note transcription is obtained via a bank of Support 
Vector Machine (SVM) classifiers previously trained using, as 
spectral features, the result of Constant-Q Transform (CQT).  

We introduce a short-term memory based feature vector for 
classification. Moreover, we examine the effect on transcription 
performance of different SVM kernels and different scales of 
amplitude spectrum values.  

The paper is organized as follows: in the following section the 
onset detection algorithm will be described; in Section 3, the 
short-term memory spectral features will be formulated; Section 
4 will be devoted to the description of the classification method; 
in Section 5, we will present the results of a series of 
experiments involving polyphonic piano, guitar and xylophone 
music. Some comments conclude the paper. 

2. ONSET DETECTION  
The aim of note onset detection is to find the starting time of 
each musical note. Several different methods have been 
proposed for performing this task [7, 8].  

Our method is based on STFT and, notwithstanding its 
simplicity, it gives better or equal performance compared to 



other methods [7, 8]. Let us consider a discrete time-domain 
signal s(n), whose STFT is given by 

Sk (m) = w(n − mh)s(n)
n= mh

mh +N−1

∑ e− jΩN k(n−mh )          (1)  

where N is the window size, ΩN = 2π/N, h is the hop size,  m = 
0, 1, 2,…, M is the hop number, k = 0, 1,…, N-1 is the 
frequency bin index, w(n) is a finite-length sliding Hanning 
window and n is the summation variable.  

We obtain a time-frequency representation of the audio signal 
by means of spectral frames represented by the magnitude 
spectrum �Sk(m)�.  

The values �Sk(m)� can be packed as columns into a non-
negative L×M matrix, where M is the total number of spectra 
we computed and L = N/2+1 is the number of their frequencies.  

Afterwards, the rows of S are summed, and the following onset 
detection function, based on the first-order relative difference, is 
computed 

fonset (m) =
f (m) − f (m −1)

f (m)
         (2)

 
where 

f (m) = S(l,m)
l=1

L

∑          (3)
 

The peaks of the function fonset can be assumed to represent 
the times of note onsets. After peak picking, a threshold T is 
used to suppress spurious peaks; its value is obtained through a 
validation process as explained in Section 5. 

To demonstrate the performance of our onset detection method, 
let us show an example from real piano polyphonic music of 
Mozart's KV 333 Sonata in B-flat Major, Movement 3, sampled 
at 8 KHz and quantized with 16 bits.  

We will consider the second and third bar at 120 metronome 
beat. It is shown in Figure 1.  

We use a STFT with N = 512, an N-point Hanning window and 
hop size h = 256 corresponding to 32 milliseconds hop between 
successive frames. Figure 2 shows the onset detection function. 

 

 
Figure 1.  Musical score of Mozart's KV 333 Sonata in B-flat Major. 

 
Figure 2.  Onset detection function for the example in Figure 1. 

 
3. THE CONSTANT-Q TRANSFORM AND THE 
SPECTRAL FEATURES 
The Constant-Q Transform (CQT) [9] is similar to the Discrete 
Fourier Transform (DFT) with a main difference: it has a 
logarithmic frequency scale, since a variable width window is 
used. It suits better for musical notes, which are based on a 
logarithmic scale.  

The logarithmic frequency scale provides a constant frequency-
to-resolution ratio for every bin 

Q =
fk

fk +1 − fk
=

1
21/ b −1

         (4)  

where b is the number of bins per octave and k the frequency 
bin. If b = 12, then k is equal to the MIDI note number (as in the 
equal-tempered 12-tone-per-octave scale). An efficient version 
of the CQT, based on the FFT and on some tricks, is presented 
in [10]. 

All the audio files that we used have a sampling rate of 8 kHz. 
The spectral resolution is b = 372, that means 31 CQT-bins per 
note, starting from note C0 (~ 32 Hz) up to note B6 (~ 3951 
Hz). We obtain a spectral vector A composed by 2604 = 31 
(CQT-bins) × 84 (musical notes).  

To reduce the size of the spectral vector, we operate a simple 
amplitude spectrum summation among the CQT-bin relative to 
the fundamental frequency of the considered musical note, the 
previous 15 CQT-bins and the subsequent 15 CQT-bins; then, 
we obtain a spectral vector B composed by 84 = 1 (CQT-bins) × 
84 (musical notes).  

This can be formulated as follows 

B(i)   = A( j)
j= 31⋅ i−30

31⋅ i

∑              i = 1,2,..,84               (5)  

Figure 3 shows the complete process of the spectral vector 
reduction.  

Figure 4 shows the differences between three spectral vectors 
computed with b = 372 (4a), b = 84 (4b) and b = 372 with 
vector reduction (4c).  

 



 

Figure 3.  Reduction of the spectral vector. 

Using (5) allows to obtain a greater accuracy in high frequency 
with the same vector length, as can be seen in Figures 4b and 
4c.  

The processing phase starts in correspondence to a note onset. 
Notice that two or more notes belong to the same onset if they 
are played within 32 ms. Firstly, the attack time of the note is 
discarded (in case of the piano, the longest attack time is equal 
to about 32 ms). Then, after Hanning windowing, a single CQT 
of the following 64ms is computed.  

 
Figure 4.  Spectral vectors of  a polyphonic combination of note C3, 
G3 and B3 with b = 372 (a), b = 84 (b) and b = 372 with reduction (5) 
(c). 

In our work, we take into account the following assumption: 
melodic and harmonic musical structures depend on the method 
adopted by the composer; this means that every musical note is 
highly correlated to the previous note in the composition.  

Consequently, to improve classification results, we consider 
what happens before the onset, in particular, we introduce a 
short-term memory as follows: firstly, the segment of 32 ms 
preceding the onset time of the note is discarded, then, using 
Hanning windowing, the CQT on the previous 64 ms is 
computed. The output of the processing phase, including all the 
note onsets, is a matrix of 168 = 84 × 2 columns, corresponding 
to the CQT-bins, and a number of rows that is equal to the total 
number of note onsets in the Wave file computed with (2).  

Two different feature vectors are considered for classification: 
they are based on two different scales of amplitude spectrum 
values, linear and logarithmic, rescaled into a range from 0 to 1. 

4. MULTI-CLASS SVM CLASSIFICATION  
A SVM identifies the optimal separating hyperplane (OSH) that 
maximizes the margin of separation between linearly separable 
points of two classes.  

The data points which lie closest to the OSH are called support 
vectors. It can be shown that the solution with maximum margin 
corresponds to the best generalization ability [11].  

Linearly non-separable data points in input space can be 
mapped into a higher dimensional (possibly infinite 
dimensional) feature space through a nonlinear mapping 
function, so that the images of data points become almost 
linearly separable.  

The discriminant function of a SVM has the following 
expression 

  f (x) = α i yiK (x i ,x)
i

∑ + b          (6)

where xi is a support vector, K(xi, x) is the kernel function 
representing  the inner product between xi and x in feature 
space, coefficients αi and b are obtained by solving a quadratic 
optimization problem in dual form [11].  

Usually, a soft-margin formulation is adopted where a certain 
amount of noise is tolerated in the training data. To this end, a 
user-defined constant C > 0 is introduced which controls the 
trade-off between the maximization of the margin and the 
minimization of classification errors on the training set [11].  

The SVMs were implemented using the software SVMlight, 
developed by Joachims [12].  

A linear kernel (5) and a radial basis function (RBF) kernel (6) 
were used 

K x i ,x j( )= x i ⋅ x j        (7)
 

K x i ,x j( )= exp −γ  x i − x j
2⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ ,     γ > 0          (8)  

Linear SVMs need a regularization parameter C to be 
determined, while using the RBF kernel we need two 
parameters, C and γ. To this end we looked for the best 
parameter values in a specific range using a grid-search on a 
validation set. More details will be given in Section 5.  

For multiclass classification, the one-versus-all (OVA) 
approach has been adopted. The OVA method exploits L 
SVMs, L being the number of classes. The ith SVM is trained 
using all the samples in the ith class with a positive class label 
and all the remaining samples with a negative class label.  

Our transcription system uses 84 OVA SVM note classifiers 
whose input is represented by a 168-element feature vector, as 
described in Section 3.  



The presence of a note in a given audio event is detected when 
the discriminant function of the corresponding SVM classifier is 
positive. Figure 6 shows a schematic view of the complete 
automatic transcription process. 

 

Figure 6.  Schematic view of the complete automatic transcription 
process. 

 

5. AUDIO DATASET AND EXPERIMENTAL RESULTS 

In this section, we report the simulation results of our 
transcription system.  

The MIDI data used in the experiments were collected from the 
Classical Piano MIDI Page, http://www.piano-midi.de/ [13]. A 
list of used pieces can be found in [13] (p. 8, Table 5).  

The 124 pieces dataset was randomly split into 87 training, 24 
testing, and 13 validation pieces. The first minute from each 
song in the dataset was selected for experiments, which 
provided us with a total of 87 minutes of training audio, 24 
minutes of testing audio, and 13 minutes of audio for parameter 
tuning (validation set). This amounted to 22680, 6142, and 3406 
note onsets in the training, testing, and validation sets, 
respectively.  

First, we performed a statistical evaluation of the performance 
of the onset detection method. We consider as correct the onset 
detected within 32 ms of the ground-truth onset.  

The results are summarized by three statistics: the Precision, the 
Recall and the F-measure, which are given by 

Precision =
TP

TP + FP
   ;    Recall =

TP
TP + FN

         (9)

 Fmeasure =
2 ⋅ Precision ⋅ Recall
Precision + Recall

         (10)
 

In the above formulas TP is the number of correct detections, 
FP is the number of false positives and FN is the number of 
false negatives. Precision represents the percentage of correct 
positive predictions in the identification of an example. Recall 
represents the capacity of the onset detector to identify the 
positive examples. The global variable F-measure is the 
harmonic mean of Precision and Recall.  

As concerns the onset detection algorithm, we experimented 
with the threshold value to suppress spurious peaks. The 
reported results were obtained using the threshold value 0.02, 
0.02, 0.05, referring to the three musical instruments; it was 
selected through maximization of the F-measure value on the 13 
pieces of the validation dataset.  

Table I quantifies the performance of the method on the test set 
(including 6142 onsets). The F-measure, outlined in Table I, can 
be compared with the results in [14], where a different onset 
function was used. The F-measure in [14] was 96.3% for piano, 
94.8% for guitar and 95.6% for xylophone. 

Table I 

 Piano Xylophone Guitar  
Precision 98.2% 96.8% 96.9% 

Recall 96.2% 94.6% 95.7% 
F-measure 97.2% 95.7% 96.3% 

 

After detecting the note onsets, we trained the SVMs on the 87 
pieces of the training set for each musical instrument, using 
both linear and logarithmic scale, and we tested the system on 
the 24 pieces of the test set. Moreover, to ascertain the effect of 
short-term memory, we evaluated the accuracy of the 
corresponding memoryless system, using the 84 CQT-bins 
feature vector, as described in Section 3.  

The accuracy results are outlined in Table II, III and IV, 
referring to the three musical instruments. 

 

Table II 

 

Table III 

 

Table IV 

 

System WITH 
Short-term Memory 

System WITHOUT 
Short-term Memory Piano 

KERNEL KERNEL 
SCALE Linear RBF Linear RBF     
Linear 71.4% 72.7% 60.1% 65.3% 

Logarithmic 75.4% 80.3% 68.9% 73.5% 

System WITH 
Short-term Memory 

System WITHOUT 
Short-term Memory Guitar 

KERNEL KERNEL 
SCALE Linear RBF Linear RBF     
Linear 70.8% 72.1% 59.7% 64.8% 

Logarithmic 74.6% 77.8% 68.1% 72.8% 

System WITH 
Short-term Memory 

System WITHOUT 
Short-term Memory Xylophone 

KERNEL KERNEL 
SCALE Linear RBF Linear RBF     
Linear 69.6% 70.4% 59.0% 63.5% 

Logarithmic 71.6% 76.9% 67.0% 71.5% 



In Tables II, III and IV, Accuracy denotes the accuracy metric 
proposed by Dixon [15], which is given by 

[9] J. C. Brown, “Calculation of a constant Q spectral 
transform”, Journal of the Acoustical Society of 
America, vol. 89, no. 1, pp. 425–434, 1991. 

Accuracy =
TP

TP + FP + FN
         (11)  [10] J. C. Brown and M. S. Puckette, “An efficient algorithm 

for the calculation of a constant Q transform,” Journal of 
the Acoustical Society of America, vol. 92, no. 5, pp. 
2698–2701, 1992. 

6.  CONCLUSIONS [11] J. Shawe-Taylor, N. Cristianini An Introduction to 
Support Vector Machines, Cambridge University Press 
(2000). In this paper, we have discussed a polyphonic piano, guitar and 

xylophone transcription system based on the characterization of 
note events.  

[12] T. Joachims, Making large-Scale SVM Learning 
Practical. Advances in Kernel Methods - Support 
Vector Learning, B. Schölkopf and C. Burges and A. 
Smola (ed.), MIT-Press, 1999. We focused our attention on temporal musical structure to 

detect notes. In particular, we considered a short-term memory 
preceding the note onset.  

[13] G. Poliner and D. Ellis, “A Discriminative Model for 
Polyphonic Piano Transcription”, EURASIP Journal of 
Advances in Signal Processing, vol. 2007, Article ID 
48317, pp. 1-9, 2007. Different systems have been compared, based on feature vectors 

of 84 CQT-bins (memoryless) and 168 CQT-bins (with short-
term memory), with linear or RBF kernel, and linear or 
logarithmic amplitude spectrum scale.  

[14] G. Costantini, M. Todisco, R. Perfetti, “A Novel Sensor 
Interface for Detecting Musical Notes of Percussive 
Pitched Instruments”, Proceedings of IWASI IEEE 
International Workshop on Advances in Sensors and 
Interfaces, Trani (Bari), Italy, June 25-26, 2009, pp. 121-
126. 

It has been shown that the proposed spectral reduction is helpful 
to lower computational cost without decreasing accuracy in the 
transcription system.  [15] S. Dixon, “On the computer recognition of solo piano 

music”, in Proceedings of Australasian Computer 
Music Conference, pp. 31–37, Brisbane, Australia, July 
2000. 

A wide number of musical pieces of heterogeneous styles were 
used to validate and test our transcription system.  

 A comparison of results shows the higher performance of the 
short-term memory based system with respect to the 
memoryless approaches. 
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