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ABSTRACT 
 
The first part of this paper briefly describes the history of 
RSA and the theory behind the scheme. The main part of 
this article provides an overview of RSA attack strategies 
which are grouped into major categories. Included are 
descriptions and assessments of factoring attacks, 
exponent-based attacks, forging RSA signatures, and 
hardware-based attacks. Each of the categories is 
analyzed for potential vulnerabilities that might be 
exploited. The paper concludes with a discussion of the 
overall security of this system. 

 
1. INTRODUCTION 

A fundamental requirement for Internet and other forms 
of networking is secure transmission of data. The sender 
must transmit data to the receiver without it being viewed 
or modified. The receiver requires assurance that the data 
was sent from the sender, not from someone using the 
sender’s information. The objective of cryptography is 
information security, and the advent of public key 
cryptography was a significant step forward. One of the 
first major advances in public key cryptography was the 
RSA algorithm. It was the first algorithm known to be 
suitable for signing messages as well as for encryption, 
and is still widely used today for critical transmissions 
such as credit card transactions. 

The first paper on the RSA was due to Ron Rivest, Adi 
Shamir and Leonard Adleman from MIT and was 
published in 1978 [1]. Impetus for their work came from a 
public-key cryptosystem conceived, but never 
implemented by Diffie and Hellman [2]. MIT was granted 
a patent for a communications system that used the 
algorithm in 1983 [1]. The algorithm is based upon public 
and private keys. The public key is made known and is 
used to encrypt a message so that anyone can do so. Only 
the recipient knows the private key which is needed to 
decrypt. The public key has two parts, the modulus n and  

 

the public exponent e. The private key has also modulus n 
and the private exponent d which is kept secret. The 
public and private keys are mathematical inverses of each 
other. 

The remainder of this article explores the security of RSA 
and contains a survey of potential attacks on the 
algorithm. The attacks are categorized either by the basic 
approach taken, or by the part of the RSA system that the 
attack seeks to exploit (the message itself or the 
signature). The main attack categories, factoring, 
exponent based and hardware based, are described. The 
article closes by drawing some conclusions regarding 
vulnerabilities in the RSA cryptosystem. 

2. FACTORING ATTACKS ON RSA 
 
Factoring attacks are based upon the fact that the private 
key d can be computed if p and q can be discovered by 
factoring n. Given n and e (which is already known) d can 
be computed by solving the equation de≡mod φ (n) where 
the totient is φ (n) = (p-1) (q-1). There are several 
approaches to the factoring of large numbers. The next 
sections will consider several in turn.  
 
Brute-Force Factoring attack. This approach is based 
on searching for factors of n, p, and q by trying all 
possibilities. The size of the set of possible factors can be 
decreased by finding the square root of n and also by 
excluding even numbers and numbers ending in 5. 
Protection against the brute-force attack is to pick large 
primes p and q. Making p and q the same size also makes 
factoring n harder. For instance, in the current RSA 
competition, n is comprised of 205 digits. Therefore, 
brute force methods are computationally intractable. 
 
General purpose factoring methods: General purpose 
factoring methods can be used to factor any numbers. One 
of the earliest general purpose factoring methods was the 
Sieve of Eratosthenes [3]. An algorithm called the general 
number field sieve [4] is the most efficient algorithm 
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known for factoring integers larger than 100 digits. An 
older method called the quadratic sieve method is also 
known. Both methods are based on the idea that one 
might factor n using the respective sieve to determine 
integers a, and b such that a2 ≡ b2 mod n and a ≡ (+-) b 
mod n. Then, n divides a2 - b2= (a - b)(a + b), but neither 
a-b nor a+b. Hence, gcd ((a-b), n) is not a trivial factor of 
n. The general number field sieve or older quadratic sieve 
differ in the specific way the integers a and b satisfying a2 
≡ b2 mod n and a ≡ (+-)b mod n are found.  
 
Crandall and Pomerance [5] present an algorithm that can 
factor a 70 digit number. According to Silverman [6], the 
algorithm will take about a day on modern computers. 
However, general purpose factoring methods can not 
factor any integer. General purpose factoring can be sped 
up by parallel computation which is based on giving each 
CPU a different set of polynomials. However, it is 
impractical to factor 200 digit numbers because doing so 
would require on the order of a billion times longer than 
100-digit numbers according to Silverman [6]. Worse 
still, it is not currently possible to factor 100-digit 
numbers. 
 
Special-purpose Factoring Methods: This type of 
factoring depends on the form of p and q. These methods 
are more efficient than general purpose ones if p and q are 
in the right format. Pollard’s p-1 method [7] is one such 
example. The algorithm is based on the fact that numbers 
of the form ab − 1 tend to be highly composite when b 
composite. Since it is computationally simple to evaluate 
numbers of this form in modular arithmetic, the algorithm 
makes it possible to check many potential factors quickly. 
In particular, the method will find a factor p if b is 
divisible by p − 1, hence the name. When p − 1 is smooth 
(the product of only small integers) then this algorithm is 
well-suited to the discovery of the factor p. However, 
several other constraints must be satisfied for the method 
to work. The main advantage of special-purpose factoring 
methods is that if the number is in the right form, it can be 
factored quite quickly.  

Elliptic Curve Method. This method was introduced by 
Lenstra [7] and is one of the fastest factoring methods for 
numbers comprised of approximately 25 digits. It is an 
improved version of the Pollard p-1 method. The Lenstra 
elliptic curve factorization gets around the assumption 
that n has a prime factor p such that p − 1 had only 
"small" prime factors, by considering the group of a 
random elliptic curve (an algebraic curve defined by an 
equation of the form y2 = x3 + ax + b ) over the finite field 
Zp, rather than considering the multiplicative group of Zp 
which always has order p-1. As demonstrated in a 
theorem by Hasse the order of the group of an elliptic 
curve over Zp varies between p+1-2*sqrt(p) and 
p+1+2*sqrt(p), which bounds the number of points on an 
elliptic curve over a finite field, above and below, and 

randomly, and is likely to be smooth for some elliptic 
curves. Elliptic curve factorization can be also executed 
on more than one processor. Each processor will get its 
own curve and will quit on first success. According to 
Silverman [6], a 38 digit number was factored by this 
method. A simple defense against this algorithm is to 
make n large and the factors the same size, since the 
algorithm starts with small factors first. 

Factoring on a Quantum Computer. Shor’s algorithm 
[8] is a polynomial-time integer factorization algorithm 
designed for implementation on quantum computers. Like 
many quantum computer algorithms, it is probabilistic: it 
gives the correct answer with high probability, and the 
probability of failure can be decreased by repeating the 
algorithm. However, since a proposed answer is verifiable 
in polynomial time, the algorithm can be modified to 
work both correctly and efficiently.  

The algorithm consists of an iterative process of 
generating a random number a and computing gcd(a,N) 
If a ≠ 1, the algorithm terminates with success. If not, a 
period-finding routine based in a quantum computer is 
called. The result of the quantum computation, r, is either 
a solution to the problem or additional iterations are 
performed. At present, it is difficult to state 
authoritatively if Shor’s algorithm will be a threat to RSA 
or not because the period-finding subroutine must be 
tuned to each unique value of N and generally speaking, 
quantum computing is still much more an area of research 
than a scalable, deployable technology. 

3. EXPONENT-BASED ATTACKS 
 
To reduce encryption or signature-verification time, a 
small public exponent e is often used. The smallest 
possible value for e is 3. The following attacks are similar 
to factoring attacks in the sense that the goal is to find p, 
and q. However, low exponent attacks rely on a low 
public exponent in order to find the prime factors. The 
following attacks exploit low values of the exponent. 

Wiener’s Attack. In 1990, Wiener [9] observed that 
information encoded in the public exponent e might help 
to factor n. Wiener proposed an attack on the RSA system 
by a continued fraction approximation, using the public 
key (n, e) to provide sufficient information to recover the 
private key d. Wiener proved that if the keys in the RSA 
system are chosen such that n= pq, where q < p < 2q, and 
d <⅓4*sqrt(n), then given the public key (n, e) with de= 1 
mod φ the private key d can be computed in linear time.  

This approach only works if d is chosen to be small 
relative to n. However some devices use small d because 
they have limited computational power. Wiener proposes 
certain techniques to avoid his attack such use of a large 
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encryption exponent. Boneh and Durfee [10] extended 
Wiener’s work by showing that the attacker can 
efficiently compute d from (n, e) provided that d < N 0.292. 
They expect their algorithm to work on d < N 0.5. 
However, as stated in their conclusion, they can not state 
the approach to their attack as a theorem since they can 
not prove that it will always succeeds [10]. 

Small-Message Attack. RSA encryption is not effective 
if both the message m to be encrypted and the exponent e 
to be used for encryption are small relative to the modulus 
n. If c=me < n is the cipher text, then m can be recovered 
from c by ordinary root extraction (the operation of taking 
an nth radical root of a number). Therefore, either the 
public exponent should be large or the messages should 
always be large. Practically speaking, a small public 
exponent is often preferred with the message padded so 
that it is large, in order to speed up the encryption and to 
prevent Wiener’s attack. 

Low-Exponent Attack with Multiple Recipients. 
Hastad [11] showed that low exponent RSA is not secure 
if the same message is encrypted to several receivers. For 
example, let e = 3. Then if the number of receivers is 7, 
the eavesdropper can find the plaintext from the seven 
cipher texts of each receiver. If three senders participating 
in the same system encrypt the same message m using the 
same public exponent 3, the attacker can compute m from 
the three cipher texts even if the senders are using 
different modulo values: n1, n2, and n3. 

Generally, if k plain texts are encrypted with the same 
exponent e, an attacker can solve for m in polynomial 
time using lattice reduction techniques. This result has 
been extended by Coppersmith [12] who showed that 
RSA encryption with exponent 3 is vulnerable if the 
opponent knows two-thirds of the message, or if two 
messages agree over eight-ninths of their length. Low-
Exponent attack is also a concern if the messages are 
related in a known way. Padding the messages with 
pseudorandom strings prior to encryption prevents 
mounting this attack in practice. If the messages are 
related in a known way, they should not be encrypted 
with many RSA keys. A recommended value of e that is 
commonly used today is e=216 +1. One advantage of this 
value for e is that its binary expansion has only two ones, 
which implies that the square-and-multiply algorithm 
requires very few operations. 
 

4. FORGING RSA SIGNATURES 
 
A fairly significant real-world scare occurred because of 
an implementation flaw in error reporting during 
signature verification [18]. This vulnerability afforded the 
possibility of signatures being forged using only an RSA 
public key (without requiring the RSA private key). This 
problem included all RSA signatures. 

The source of the problem was reportedly a failure of the 
implementation of the software that did not allow it to 
detect signatures which have been crafted to appear 
mostly valid. This failure to detect and alert on this 
category of signatures could create a situation where a 
forged signature may be trusted. The end result of a 
successful attack could include abusing trust relationships 
that have been established based on RSA keys or digital 
certificates, such as posing as a trusted party and signing a 
certificate or key. The vulnerability was detected and 
remediated before significant damage occurred. 

5. ADAPTIVE CHOSEN CIPHERTEXT ATTACKS 

In 1998, Bleichenbacher [13] described the first practical 
adaptive chosen ciphertext attack, against RSA-encrypted 
messages using the PKCS #1 v1 padding scheme (a 
padding scheme randomizes and adds structure to an 
RSA-encrypted message, so it is possible to determine 
whether a decrypted message is valid.) The 
Bleichenbacher sent millions of test ciphertexts to a 
decrypter in order to reveal the content of an RSA 
encrypted message. He showed that an RSA private-key 
operation can be performed if the attacker has access to an 
oracle that, for any chosen ciphertext, returns only one bit 
telling whether the ciphertext corresponds to some 
unknown block of data encrypted using PKCS #1. This 
method is especially dangerous for servers using SSL.  

A recipient (server), may be vulnerable to this attack if it 
processes many messages, and reveals the success or 
failure of the operations. A protocol such as SSL may not 
require client authentication, so the attacker can easily 
remain anonymous through the process. In order to 
prevent adaptive-chosen-ciphertext attacks, it is necessary 
to use an encryption or encoding scheme that limits 
ciphertext malleability (transformations on the ciphertext 
to produce meaningful changes in the plaintext). Another 
countermeasure is to change the server’s key pair 
frequently. 

6. SUPERENCRYPTION 

SuperEncryption is a process of running an already 
encrypted file through an encryption algorithm. A 
SuperEncryption attack against RSA was developed and 
reported by Simmons and Norris [14] shortly after RSA 
was published. It is based on the fact that a sufficient 
number of encryptions will eventually produce the 
original message. This result occurs because the RSA 
encryption function is mapped onto a finite set, which 
makes the graph of the function a union of disjoint cycles. 
This attack was a real threat to RSA while the number of 
encryptions required was small. However, if the 
communications use large primes which will be used in 
random, superencryption becomes impractical. 
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7. HARDWARE-BASED ATTACKS 
 
The next two attacks can be categorized as hardware 
based because they exploit knowledge of the sender’s or 
recipient’s hardware. 
 
Timing attacks. In 1995, Kocher[15] described a timing 
attack on RSA based on knowing specific attributes of the 
recipient’s hardware. If the attacker has ciphertext from 
the sender, the ciphertext can be used to determine the 
private key by measuring decryption times on the 
recipient. This attack can be used either to determine d or 
to attack the RSA signature. In 2003, Boneh and 
Brumley[16] demonstrated a different timing attack that 
exploits data recovered from a Secure Socket Layer 
(SSL)-enabled server to attain an RSA factorization. This 
attack takes advantage of information leaked by the 
Chinese remainder theorem optimization used by many 
RSA implementations. The most effective defense is to 
arrange to have the same decryption times for different 
ciphertext values. 

Branch Prediction Analysis (BPA) attacks. Many 
processors use a Branch predictor to determine whether a 
conditional branch in the instruction flow of a program is 
likely to be taken or not. Usually these processors also 
implement Simultaneous multithreading (SMT). Branch 
Prediction Analysis attacks use a spy process running in 
parallel on the same processor as a process executing an 
RSA algorithm to discover the private key. Simple 
Branch Prediction Analysis (SBPA) claims to improve 
BPA in a non-statistical way. In [17], the authors of 
SBPA claim to have discovered 508 out of 512 bits of an 
RSA key in a single signing operation. Their attack was 
against an OpenSSL RSA implementation. They conclude 
that memory protection, sandboxing and virtualization, 
fail to prevent such “side channel” attacks and that these 
attacks are much more dangerous than “pure” timing 
attacks. 

8. CONCLUSIONS 
 
While this article presents a snapshot in time, the question 
of vulnerabilities in the RSA system is an ongoing one. 
As an example, it is now feasible to factor keys of the 
lengths used in the earliest specifications of the system. 
The simple remedy was to make keys longer. However, 
some current vulnerabilities might be identified. Clearly, 
the exponent must be larger than 3 to decrease the 
possibility of low exponent attacks. Specific 
implementations might introduce vulnerabilities that do 
not stem from the specification, as was the case with the 
signature forgery attacks. In the case of servers, the key 
should be changed often to prevent adaptive chosen 
ciphertext attacks.  Otherwise, RSA appears to contain 
few vulnerabilities that can be exploited However, with 
advances in quantum  computers, all bets may be off.  

In summary, it is possible that the main area of 
vulnerability in this scheme pertains to the human beings 
who create and use implementations of it. RSA software 
comes with default settings which differ from company to 
company. Most implementations are set up to provide 
basic security, which means that the exponent used can be 
low and can allow the attacker to use one of the low 
exponent attacks. The key can be set to 64 bits which is 
easy to break using some factoring methods. New 
installations must always be checked for these settings to 
ensure security. It is worth noting that as computing 
methods evolve, cryptology will also advance, but so will 
the sophistication of attacks. Consequently, the security of 
RSA will remain a matter requiring ongoing vigilance. 
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