
ABSTRACT 
 
A feed-forward neural network is developed for solving the 
nonlinear forward problem of Electrical Capacitance Tomography 
(ECT). The ECT system is used in this work to determine the 
characteristic of the molten metal in lost foam casting (LFC) 
process. The metal-fill profile is one of the important factors that 
affect casting quality. The training data are generated by 
simulating different flow schematics of the molten metal during 
the casting process. Finite element method is used to generate the 
training data. Although a large amount of flow patterns and a 
considerable CPU time are required in the training phase, the 
trained network is characterized by simplicity and fast response. 
The nonlinear solution from the neural network can be combined 
with the Linear Back Projection algorithm to solve the inverse 
problem and generate the final images. The performance of the 
technique is compared with commonly used Linear Forward 
Projection (LFP) using sensitivity matrix, showing superiority in 
terms of both stability and quality of reconstructed images. 
 
Keywords: Electrical Capacitance Tomography, Lost Foam 
Casting, Neural network. 

1. INTRODUCTION 
Electrical Capacitance Tomography (ECT) is used to image an 
object by measuring the mutual electrical capacitance between 
sets of electrodes mounted on its periphery. ECT system is 
superior in many cases over other tomography modalities due to 
its fast data acquisition speed, low construction cost, non-
intrusive, non-destructive and safety. Reconstruction of the cross-
section images in ECT system from the capacitance measurements 
is a nonlinear and ill-posed inverse problem. The image 
reconstruction process is ill-posed inverse problem because the 
number of unknowns (image pixels) is more than the number of 
known values (capacitance measurements). The nonlinear 
relationship between the physical distribution and the capacitance 
measurements makes the image reconstruction a challenging task 
[1]. There are two major computational problems in ECT: the 
forward problem and the inverse problem. The forward problem is 
to determine inter-electrode capacitance from the permittivity 
distribution by solving the partial differential equations governing 

 

the sensing domain. The inverse problem is to determine the 
permittivity distribution from the  capacitance measurements. The 
result is usually presented as a visual image, and hence this 
process is called image reconstruction [2]. 
 
ECT system is used in many applications; Lost Foam Casting 
(LFC) process is one of these applications using tomography to 
describe the metal fill profile. It is very simple and cheap to cast 
very complex patterns by generating foam patterns as molds in 
LFC. In this process the molten metal decomposes the foam 
pattern and creates a casting in its shape [3]. LFC offers many 
advantages over conventional sand casting processes such as 
significant energy and environmental advantages, simplified 
production techniques and reduced environmental waste due to 
binder system emissions and sand disposal, beside the low cost. 
The process is well known for casting complex geometries, small 
details, and smooth surface finishing requirements.  
 
A better understanding of the characteristics of the molten metal 
inside the foam pattern is needed to reduce the fill related defects 
and to improve the final casting [4]. Much effort has been put into 
developing a wide variety of imaging techniques for industrial 
process applications over the past two decades. For example, X-
ray techniques [5] are presently used to assess the filling 
characteristics of the liquid metal. However, X-ray methods suffer 
from the natural hazards of radiation and size of the equipment 
and it is very expensive compared to the ECT system. 
 
Most of image reconstruction algorithms are based on iterative 
techniques due to the nonlinear relation between the sensing field 
and the physical distribution [6-8]. In iterative techniques, the 
error between measured and calculated capacitance is minimized 
by updating the reconstructed image accordingly. A linear model, 
called sensitivity matrix, based on linearzing the relation between 
the physical property and the measured capacitance is generated to 
update the image.  
 
The sensitivity matrix is generated by dividing the domain of 
interest into small pixels then the capacitance data are obtained as 
a linear sum of different perturbations composing the overall 
distribution. Although the use of the sensitivity matrix increases 
the speed of solving the forward and the inverse problems, the 
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results are blurred and poor due to the linear approximation. 
Another big problem associated with the use of conductive 
material in the LFC application is the shielding. Having the metal 
in front of any sensor makes it blind to any change behind the first 
level.   
 
To overcome such limitations, a nonlinear forward solver based 
on intelligent Feed-Forward Neural Network (FFNN) has been 
developed in this paper. The use of FFNN combines the 
advantages of solving the forward problem nonlinearly with high 
speed and high accuracy. The training data are generated based on 
different models developed to describe the behavior of the molten 
metal during the casting process [9-11]. The characteristic of the 
molten metal mainly depends on the temperature of the molten 
metal, geometry of the casting, type of the foam beads, and the 
location of feeding of the molten metal inside the foam pattern. 
There are three models describing the metal file profile. All of 
them are simulated by finite element method to calculate the 
capacitance measurements related to all different distributions. To 
increase the accuracy of the neural network some random metal 
distributions are generated and used to train the neural network.  

 
The organization of this paper is as follows. Section II is an 
overview of the ECT technique. The structure of the capacitive 
sensor is stated, followed by the calculation of the sensitivity 
matrix. The new feed-forward neural network for solving the 
forward problem is described in Section III. The analysis of the 
results is discussed in Section IV, and Section V contains the final 
conclusions.  

2. ELECRICAL CAPACITIVE TOMOGRAPHY 

ECT Hardware 
Generally, in the ECT system the capacitive sensors are arranged 
as an array of n electrodes mounted around the periphery of the 
imaging area. The electrodes are externally shielded to eliminate 
the stray capacitance effects [12]. All independent mutual 
capacitance measurements are measured between transmitter 
electrode connected to the source signal and the other receiver 
electrodes connected to the ground. Subsequently, the next 
electrode is made as a source and the same measurement process 
is employed [13], that means if the ECT system consists of n
electrodes the number of the independent measurements is n(n-
1)/2.

The sensor array used in this study consists of 12 electrodes 
mounted uniformly around the foam pattern (imaging area) as 
shown in Figure 1. The foam pattern is embedded inside 
compressed sand in a grounded flask.  The flask is connected to 
the earth to prevent disturbance from outside environment.  

ECT Model  
The forward problem solution determines the capacitance 
measurements of the ECT sensor given the grounded metal 
distribution in the region of interest. The relationship between the 
capacitance measurements and the permittivity distribution can be 
characterized by Poisson's equation [4]: 
 

( ) ( )( ) ( ). ε x,y φ x,y =- ρ x,y∇ ∇  (1) 

 
where ε (x ,y ) is the permittivity distribution in the sensing 
field,φ (x ,y) is the electrical potential distribution, and 
ρ (x ,y ) is the charge distribution. 

Figure 1:  Cross-sectional view of ECT electrodes system with 8 
sensors 

 
The free charges in the imaging domain are zero, which 
means ρ (x ,y )=0 and Poisson’s equation is converted to 
Laplace’s equation applied on the boundary conditions. 
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where 1 2 nΓ ,Γ ,....,Γ represent the spatial locations of the n

electrodes, sΓ is the sensor screen and eΓ represents the spatial 
locations of the m elements where the grounded metal will replace 
the foam. The electrical potential distribution can be calculated 
numerically by using the finite elements method (FEM). The 
mutual capacitance can be calculated by using Gauss’s law after 
calculating the charges on the received electrode: 
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where∆Vij is the potential difference between the source and the 

detector electrodes, Q is the electrical charges on the electrode, 
and Γ is the electrode surface. 
 
In all the iterative and the non-iterative reconstruction techniques, 
the nonlinear relationship between the capacitance measurements 
and the metal distribution is approximated by a linear function [2-
4]. The discrete form of this linear relationship can be expressed 
as  
 mx1 mxn nx1∆C =S ∆Η  (4) 
 
where S is a sensitivity matrix, ∆C is the capacitance 
measurements vector, ∆Η is a vector representing the change in 
metal distribution and the boundary conditions due to change in 
the metal fill, m is the number of the measurements, and n is the 
number of elements inside the imaging area which equals to 256 
in the model used in this paper. Figure 2 shows the finite element 
model of the metal fill problem by using ANSYS software.  It 
shows the domain of solution divided into small elements. In this 
model the foam pattern, the imaging area, is divided into 16 × 16 
grid generating 256 pixels, and the total number of finite elements 
in the whole model is 1832. 
 



Figure 2: Finite element model.  
 

Forward Problem Solution 
The forward solver aims to compute the response of all the 
electrodes by changing one element k from foam to grounded 
metal and keeping the rest of the elements as foam. The 
importance of fast forward solutions is manifested when iterative 
algorithms for image reconstruction are used. In iterative 
algorithms, the image obtained from reconstruction is updated by 
minimizing the error between the measured capacitance data and 
the forward solution for a predicted permittivity distribution. This 
process is repeated iteratively until a predefined criteria is met, so 
multiple forward solutions become necessary. Obtaining explicit 
forward solutions from (1)–(3) via brute-force numerical 
techniques is a time-consuming task, and hence alternative 
techniques must be explored.  
 
The output of the forward solver is the sensitivity matrix. The 
sensitivity model is an implementation of the superposition 
theorem, in which the forward solution is obtained as a linear sum 
of capacitance measurements from perturbations in permittivity 
distribution. A finite element model generated by using ANSYS is 
used to compute the mutual capacitance measurements Cj(k)  
k=1,2,… for all the sensors. Finally, typical sensitivity matrix 
distributions are respectively calculated according to (5) 
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where n is the number of elements inside the foam pattern, F
iC is 

the capacitance measurement when the imaging area is completely 
foam, M

iC is the capacitance when the metal fills the foam pattern 

completely, and k
iC is the capacitance value after replacing 

element k in the foam pattern by grounded metal. The sensitivity 
matrices between electrode one tol four are shown in Figure 3. 
The response is very high around the sensor and decreases 
gradually by moving further from the sensor set. The rest of the 
elements around the imaging area have zero sensitivity because 
they represent the sand elements where there is no metal. 
 
The normalized measurements vector is obtained by using the 
following equation  
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where, F
iC , M

iC are the measurement vectors when the imaging 

area is entirely filled by the foam and the metal, respectively. 

iC are the measurements corresponding to a certain grounded 
metal distribution. For any sensor, the high normalized 
measurement means that the grounded metal is very near to that 
sensor.  
 
The most common method used to solve the forward problem in 
image reconstruction process is linear forward projection (LFP) 
[12]. The LFP method is based on the sensitivity model. Based on 
this model, the mutual capacitance as a function of permittivity 
distribution can be written as (4). This technique suffers in a 
smoothing effect and lack of accuracy due to the linearization of 
an inherently nonlinear problem of electrical tomography. 
 

(a)                                           (b) 

(c) (d) 
 

Figure 3: Four sensitivity matrices for a symmetrical capacitive 
sensor array system, all dimensions in X and Y directions are in 
inches. (a)Sensitivity matrix between electrodes 1 and 2.(b) 
Between electrodes 1 and 3 (c) between electrodes 1 and 4. (d) 
Between electrodes 1 and 5. 

3. FEED-FORWARD NEURAL NETWORK (FFNN) SOLVER FOR 
THE FORWARD PROBLEM 

Artificial NNs are composed of simple processing elements called 
neurons arranged in different layers and connected with each other 
by weighted links [13]. The weight of each link represents the 
strength of the connection between two neurons. NNs play an 
important role in various applications and possess the property of 
being a universal approximator, i.e., for any function of arbitrary 
degree, there is a feed-forward NN able to approximate it. NNs are 
considered an attractive choice for modeling nonlinear and 
complex problems because of their robustness, ability to withstand 
noise, their universal approximation property, and ability to 
predict and extrapolate information hidden in the training data, in 
a process known as NN learning [14]. An important aspect in the 
image reconstruction process is the speed in the prediction once 
trained without need for linearization assumptions. 
 
A multilayer Feed-Forward Neural Network (FFNN) consists of a 
number of neurons organized in multiple layers is shown in Figure 
4. Each neuron is connected with a weight to all neurons in the 
adjacent layers. The value of each weight represents the relevance 



of the particular connection in the network structure. Each neuron 
output is mapped to a transfer function. A sigmoid function is 
usually employed to map unbounded data to the bounded range of 
the transfer function. Different sigmoid functions can be used with 
different ranges. 
 

Figure 4: FFNN with multiple layers in matrix form. 

Using FFAA is introduced in this work to solve the forward 
problem. The proposed neural network uses the metal distributions 
itself as inputs and the normalized capacitances as outputs. It 
consists of tow layers with 20 neurons in the hidden layer. Thus 
for ECT system with 16x16 image grid and 12 electrode plates, 
the size of the neural network would be 256 inputs neurons and 66 
outputs.  

Training Data 
The training data are generated based on simulating the 
characteristic of the molten metal inside the foam patterns during 
the casting process. This characteristic is related to the modes of 
foam decomposition where lost foam patterns can decompose by 
different physical mechanisms. These modes depend on local 
conditions that develop as the mold fills as well as some other 
parameters such as type of the foam beads and gating source 
where the metal is injected [9]. There are three modes for the foam 
decomposition [10, 11]: 1) Contact mode, in which the liquid 
metal presses directly against the foam as shown in Figure 5. 2) 
Gap mode, caused when polymer vapor bubbling through the 
liquid metal accumulates along an upper segment of the flow 
front, opening a finite gap between the liquid metal and the 
decomposing foam as shown in Figure 6. 3) Collapsed mode, 
Figure 7, which occurs in regions of the pattern that contain large 
amount of connected, inter-bead porosity. 
 
The training data are generated using finite element software 
package (ANSYS) to simulate the foam decomposition modes and 
the molten metal flow in every mode. The metal starts at the gate 
and grows up based on the mode of decomposition. Each frame 
represents the distribution of the metal at this time. Based on this 
distribution the capacitance measurements are computed and 
normalized according to equation (6). Different gating locations 
are considered during creating the data to simulate all possible 
distributions of the metal during the casting process. To increase 
the accuracy of the neural network many random distribution are 
generated to increase the number of data used in the training 
phase. 3000 metal distributions are used in training the feed-
forward neural network implemented in this work. Figure 8 shows 
the metal distributions simulating the contact mode while the 
metal is fed from a gate on the top.  
 
For example, the normalized capacitance data from the finite 
element simulation for the second and last distributions in Figure 
8 are shown in Figure 9. In the first distribution, a small piece of 
metal around electrode 2 causes the normalized capacitance 
between electrode number 2 and the other electrodes to be the 
maximum value almost one. The other measurements are very 
small because the metal is not in their sensing area. While, the 
measurements in Figure 9(b) coming by having half of the 

imaging area filled by metal are very high, equal one, from 
electrodes 1-3, 4 and 12.  
 

Figure 5: X-ray image for filling 8-mm thick pattern. The regular, 
smooth flow front is characteristic of contact mode. 

 

Figure 6: Radiogragh image of 12-mm thick plate filling from the 
side showing the gap mode. 

 

Figure 7: X-ray image for filling 8-mm thick pattern. The rapid, 
irregular metal flow is evidence of collapse mode. 

 

Figure 8: Metal distributions simulating the contact mode. 
 



(a) 

(b) 
Figure 9: Normalized capacitance measurements for metal 

distributions in Figure 8, (a) First distribution (b) Last distribution. 

4. EXPERIMENT AND RESULTS 

An ECT system consisting of 12 electrodes is used to test the 
proposed technique to solve the nonlinear forward problem. The 
arrangement of the 12 electrodes is described in Figure 1. The 
square flask is 20x20 inch while the imaging area is 16x16 inch 
and the size of the electrodes is 4 inch. The imaging area is 
divided into 256 elements. A Feed-Forward Neural Network has 
been trained to solve the forward problem. The inputs of the 
neural network are the metal distributions and the normalized 
capacitances from all the sensors are the outputs. Thus for ECT 
system with 16x16 image grid and 12 electrode plates, the size of 
the neural network would be 256 inputs neurons and 66 outputs. 
The network was trained with the generated data explained in the 
pervious section. It took about 2 hours and 2500 iterations to train 
the network with mean square error (MSE) performance of 
0.000277 (RMS error 1.94%) on a Windows XP machine with 
Pentium D processor (3.8 GHz) and 1 GB memory. 

 
Both the FFNN and the LFP predictions for the second and the 
last distributions in Figure 8 are plotted in Figure 10(a) and 10(b), 
respectively, and compared to the actual measured capacitance of 
the same metal distribution used in prediction. The normalized 
capacitance data generated using NN is more correlated to the 
measured capacitance than LFP. The mean square error for the 
data generated using the second distribution from the NN is 
0.00367 while using the LFP algorithm is 0.047. The result from 
the NN is much better than the LFP in Figure 10(b) because of the 
effect of the shielding. The neural network takes care of the 
nonlinearity in the response of the sensors especially when there is 
a big piece of metal shielding completely the sensor compared to 
the LFP which assumes linear response. The MSE in the second 
case related to the second distribution is 0.0029 for the neural 
network and 0.1961 for the LFP algorithm.  

5. CONCLUSION 
A new technique based on multilayer feed-forward NNs for 
solving the nonlinear forward problem in Electrical Capacitance 
Tomography has been introduced in this work. Commonly used 
LFP forward problem solution is used to compare the results from 
the proposed neural network system. Results showed superiority 
of the proposed technique in terms of accuracy and overcoming 
the problem of excessive time and computer resources necessary 
when using brute-force numerical techniques for the forward 
problem. Using NN takes care of the nonlinearity of the system 
and eliminates the shielding effect of the grounded metal. The 
described technique is fast and easy to implement in any iterative 
reconstruction algorithm. The main limitations of the technique 
are the training time and prior information required. Sufficient 
training data has to be collected.  
 

(a) 

(b) 
Figure 10: Predicted capacitance vector using both NNs and LFPs 

compared to measured capacitance of the same permittivity 
distribution.  

6. ACKNOWLEGMENT 
This work was supported by the Department of Energy, Office of 
Industrial Technologies contract #DE-FC36-04GO14228 and by 
the Center for Manufacturing Research, Tennessee Tech. 
University.  

7. REFERENCES 
[1] W. Q. Yang and L. Peng, “Image reconstruction algorithms 

for electrical capacitance tomography,” Meas. Sci. Technol.,
Vol. 11, pp. R1–R13, 2003. 

[2] W. A. Deabes, M. A. Abdelrahman, “An Iterative 
Reconstruction Algorithm for Electrical Capacitive 
Tomography Using Fuzzy System,” In proceedings of The 
12th World Multi-Conference on Systemic, Cybernetics 
and Informatics: WMSCI, pp. 161-166, 2008. 

[3] C. E. Bates, H. E. Littleton, D. Askeland, J. Griffin, B.A. 
Miller, and D.S. Sheldon, “Advanced Lost Foam Casting 
Technology”, Summary Report to DOE, AFS, Report 
no.UAB-MTG-EPC95SUM, 1995. 



[4] M. Abdelrahman et al, “A Methodology for monitoring the 
metal-fill in a lost foam casting process”, ISA Trans., Vol. 
45, No. 3, October 2006.  

[5] M. Hytros, I. Jureidini, J. H. Chun, R. Lanza, and N. Saka, 
“High-energy x-ray computed tomography of the progression 
of the solidification front in pure aluminum,” Metallurg. 
Mater. Trans. A, Vol. 30, pp. 1403–1410, 1999. 

[6] Q. Marashdeh, W. Warsito, L. S. Fan, and F. L. Teixeira, 
“Nonlinear Forward Problem Solution for Electrical 
Capacitance Tomography Using Feed-Forward Neural 
Network”, IEEE Sensors Journal, Vol. 6, pp. 441-449, April 
2006. 

[7] C. De-yun, Y. Xiao-yan, “The optimized design and 
simulation of electrical capacitance sensor for electrical 
capacitance tomography system”, Electronic Measurement 
and Instrument J., Vol. 20, No. 1, pp. 22-27, 2006.  

[8] C. De-yun, Z. Gui-bin, “Simulation of sensors and image 
reconstruction algorithm based on genetic algorithms for 
electrical capacitance tomography system”, System 
Simulation J., Vol.16 No.1, pp. 142−144, January 2004. 

[9] M. R. Barone, D. A. Caulk,”A pattern decomposition model 
for lost foam casting of aluminum: part I- Contact mode,” 
AFS Trans. vol. 114, pp. 2-20, 2006. 

[10] D. A. Caulk,”A pattern decomposition model for lost foam 
casting of aluminum: part II- Gap mode,” AFS Trans. vol. 
114, pp. 1-17, 2006. 

[11] D. A. Caulk,”A pattern decomposition model for lost foam 
casting of aluminum: part III- Collapse mode,” AFS Trans. 
vol. 114, pp. 1-11, 2007. 

[12] S. S. Donthi, “Capacitance based Tomography for Industrial 
Applications”, M. Tech. credit seminar report, Electronic 
Systems Group, EE Dept. IIT Bombay, 2004. 

[13] W. Warsito and L.-S. Fan, “Neural network based multi-
criterion optimization image reconstruction technique for 
imaging two- and three phase flow systems using electrical 
capacitance tomography,” Meas. Sci. Technol., vol. 12, pp. 
2198–2210, 2001. 

[14] Q. Marashdeh and F. L. Teixeira, “Sensitivity matrix 
calculation for fast 3-D Electrical Capacitance Tomography 
(ECT) of flow systems,” IEEE Trans. Magn., vol. 40, no. 6, 
pp. 1204–1207, Jun. 2004. 

[15] W. Fang, “A nonlinear image reconstruction algorithm for 
electrical capacitance tomography,” Meas. Sci. Technol.,
vol. 15, pp. 2124–2132, 2004. 

[16] H. Yan, L. J. Liu, H. Xu, and F. Q. Shao, “Image 
reconstruction in electrical capacitance tomography using 
multiple linear regression and regulization,” Meas. Sci. 
Technol., vol. 12, pp. 575–581, 2001. 


