
A Privacy Framework within the Java Data Security
Framework (JDSF): Design Refinement, Implementation,

and Statistics

Serguei A. Mokhov, Lee Wei Huynh, Jian Li, Farid Rassai
1455 De Maisonneuve Blvd. W.

Concordia Institute for Information Systems Engineering
Concordia University, Montreal, Quebec, Canada, H3G 1M8

{mokhov,lw huynh,j lix48,f rassai}@ciise.concordia.ca

ABSTRACT
We present a refinement design of something we call a Confiden-
tiality Framework, which is a part of a more general formation, that
we refer to as a Java Data Security Framework (JDSF), a work-
in-progress designed to support various aspects that are related to
data security (confidentiality, origin authentication, integrity, etc.
where this paper only focuses on the confidentiality aspect). The
design refinement considerations include further unification of the
parameter structure of concrete modules of the framework as well
as the design and implementation of the statistics gathering mod-
ule for comparison of the implementing methods in the framework
and the impact of the statistics collector itself in terms of run-time
performance and memory consumption in the example use-cases.

Keywords: Java Data Security Framework (JDSF), Modular Au-
dio Recognition Framework (MARF), HSQLDB, data confiden-
tiality, software engineering design, frameworks, Java

1. INTRODUCTION
In this work we use the words “privacy” and “confidentiality” in-
terchangeably in the reference to the sub-framework’s name and
the concept.

Motivation
In [11] a Java Data Security Framework (JDSF) was designed for
use in the two use-cases, HSQLDB [18] and MARF [19, 4, 5,
7, 6, 8] to allow a plug-in-like implementation of various secu-
rity aspects, the first of which is the confidentiality of the data.
Defining aspects, such as regular encryption, encrypted search, k-
anonymity, l-diversity, k-uncertainty, and indistinguishability were
considered in the earlier works of Song, Wagner, Wang, Perrig,
Sweeney, Jajodia, and others [15, 17, 23, 24, 22] in order to ex-
tract a spectrum of possible parameters these aspects require for
the design of an extensible frameworked API and its evolution. A
particular challenge is an aggregation of diverse approaches and al-
gorithms into a common set of Java interfaces, classes, their meth-
ods and related data structures to cover all or at least most common
aspects, and at the same time keeping the framework as simple as
possible and as general as possible.

Proposed Solution
This paper presents a refinement of the privacy aspect’s design as
well as the design consideration for performance gathering statis-
tics module in part to apply the framework in the MARF’s speaker

identification [12] application’s database (gathering statistical data
on performance and accuracy of the algorithms does not require
real identities of speakers to be known), and in a more general
purpose Java SQL database engine, HSQLDB.

Background
In this section we briefly review the basic related work on the
technologies used for refinement and application of the research
described in this work.

JDSF: The Java Data Security Framework (JDSF) [11, 13]
was designed as a part of a project on database privacy and secu-
rity. The design goal of JDSF is to allow a plug-in-like replaceable
architecture allowing addition and swapping different algorithm
implementations for the researchers to test, verify, validate, and
compare using a common API. The framework’s design and API
consider four major aspects when concerned with data security in
Java for different research works, which are realized as frame-
works on their own: data confidentiality (privacy) [15, 17, 23,
24], data integrity, data origin authentication, and SQL random-
ization for SQL-based databases as well as their supporting cryp-
tographic algorithms and protocols required to achieve the stated
goals. In [11], JDSF was designed for the use in the two use-cases,
specifically HSQLDB [18] and MARF [19, 5, 7, 6, 8, 10] in order
to extract the most complete list of parameters these four aspects
require for the design its implementation to be flexible and exten-
sible. JDSF relies in part on MARF, which by itself is also one
of the case studies, so the JDSF is evolving within MARF’s CVS
repository and project structure (under a separate code branch) at
present. Thus, most of the package naming and general naming
conventions come from MARF. In fact, the JDSF framework’s de-
sign is built upon the MARF’s successful approach.

MARF: The Modular Audio Recognition Framework [4,
19, 5, 7, 6, 8] is an open-source research platform and a collection
of audio and natural language processing (NLP) algorithms writ-
ten in Java. It is arranged into a modular and extensible framework
facilitating addition of new algorithm implementations for pattern
recognition and beyond. MARF’s based applications can run dis-
tributively [3] over the network (using CORBA, XML-RPC, or
Java RMI) and its implementation may act as a library in the appli-
cations. One of MARF’s applications, SpeakerIdentApp [12]
has a database of speakers, where it can identify who people are
regardless what they say.



Figure 1: Writing Data With Security Options.

HSQLDB: HSQLDB is a popular open-source SQL rela-
tional database engine, as MARF and JDSF written in Java. It has
a JDBC driver and supports a large subset of ANSI-92 SQL and
SQL 99 and 2003 enhancements. It provides a small and relatively
fast database engine, which offers both in-memory and disk-based
tables and supports embedded and server modes. Additionally, it
includes tools such as a minimal web server, in-memory query and
management tools. HSQLDB is currently being used as a database
and persistence engine in many Open Source Software projects
(e.g. OpenOffice) and even in commercial projects. It is generally
known for its small size, ability to execute completely in memory,
flexibility, and speed.

2. METHODOLOGY
Java Objects/Beans Serialization
Security of the serialization process of Java objects and beans is
where the JDSF security mechanisms kick in. In Figure 1 is a
general way the framework’s particular adapters (e.g. for MARF
and HSQLDB) write the security-enhanced data based on the se-
curity configuration options, set by the system administrator. The
reading of the security-data is the reverse process. The privacy as-
pect is the first one on the chain (though this can be altered by the
appropriate configuration options).

API Design
Here we summarize the API that is either directly part of the Con-
fidentiality Framework or is needed as a part of the supporting
modules that we designed in the JDSF.

• MARF augmented with database security packages is illus-
trated in Figure 2. These packages roughly follow the same
structure as the MARF itself as mentioned earlier – this is
where the JDSF evolves in.

• Security-related configuration classes are shown in Figure 3.

• In Figure 5 is a UML class diagram of the main interface
IConfidentialityModule, that is located in package
marf.security.confidentiality that all concrete
confidentiality modules have to adhere to.

• The interface ISecurityEnhancedObject, found in
the package marf.security.Storage is a bean with
security payload, as shown in Figure 4.

• All the modules that provide an independent security al-
gorithm implementation, should adhere to the specification
of the top level IAlgorithmProvider interface, whose
definition is found in marf.security.algorithms as
shown in Figure 6. The providers typically include for ex-
ample cryptographic algorithm implementation by whatever
vendor (that can be used by the Confidentiality framework
depicted here or the Integrity framework, that is not part of
this publication).

• Finally, in order to make most of the framework’s mod-
ules available to our use-cases, there has to be an adapta-
tion layer that transforms the data structures without secu-
rity to more secure ones and back adapted to a particular
software that manages any sort of serializeable data. It is
depicted by the ISecurityAdapter interface found in
the marf.security.adapters package, as shown in
Figure 7.

Figure 2: MARF Augmented with the JDSF Packages.

In the marf.security.algorithms package there are im-
plementations of well known cryptographic algorithms, such as
CBC-DES, RSA, DSA, MD5, and SHA1. The actual implementa-
tions in Java were provided by various open-source vendors, such
as [21, 2, 20, 16, 14, 1]. Since these implementations have some-
times little in common, integrating them into the framework has
to be abstracted by a common API of algorithm providers (as in
Figure 6), so the rest of the framework does not depend on the
vendors’ API and can be replaced to use another implementation
easier when desired.

The most complexity goes into the implementation and integration
of the framework into the actual data management tools, such as
MARF and HSQLDB. For this we provide their specific adapters



Figure 3: marf.security Package.

(see Figure 7). MARF gets its security adapter class implemented
in marf.security.adapters.MARFSecurityAdapter,
which extends MARF-specific storage management and, likewise,
marf.security.adapters.HSQLDBSecurityAdapter
class for HSQLDB, which are there to be “injected” into the orig-
inal code wrapping storage management functions of the original
tools to mandatory go through the security-enhanced API. The re-
placed and/or extended modules with the security mechanisms ex-
actly are marf.Storage.StorageManager for MARF and
org.hsqldb.persist.Log for HSQLDB.

Parameters Summary
Here we summarize various confidentiality parameters gathered so
far during our research.

1. Data object to anonymize (encrypt).

2. Encryption key(s) and their size.

3. Encryption algorithm type (CBC-DES, RSA, DSA).

4. Hashing algorithms for HMAC (SHA1, MD5) for encrypted
search.

5. n is the size of the search word, and m is the size of the right
portion in bits that corresponds to the encrypted portion of
Wi on the right Ri and the same size as Fki(Si).

6. k – an integer, how many records should appear similar at a
minimum, ≥ 2. or how many association there may be for
the k-uncertainty, or the parameter for undistinguishability
k-SIND.

7. Confidentiality algorithm type (k-anonymity, l-diversity, or
k-uncertainty) with ability to chain the algorithm or set any
combination of them depending on the desired policy.

8. l – an integer for l-diversity.

3. PERFORMANCE/OVERHEAD
ANALYSIS AND STATISTICS

GATHERING DESIGN
Adding any security mechanism, whether it is originally designed
within a system or as an add-on for an existing system is a source
of an overhead that may hurt performance. The overhead may be
insignificant compared to the accuracy of results, such as for exam-
ple distributed scientific computations over the Internet as done for
example for Distributed MARF (DMARF) [3, 9], but may be more
important in the general user-interactive database-driven applica-
tions as well as applications that do a bulk of multimedia process-
ing such as for law enforcement. Thus, we present an analysis of
the minimal and per-algorithm overhead JDSF brings as a security
layer in the existing tools in terms of time and space requirements.

The basic overhead ob stems from extra method calls and object
wrappings/instantiations that need to take place when a JDSF in-
stance is injected into say MARF’s storage operations. To measure
the basic overhead, we create a Dummy instance of every algorithm
type that acts as a “pass-through” module for data, while maintain-
ing the minimal number of method calls and object instantiations
JDSF requires. ob is JDSF-dependent.

The algorithm overhead oa, is the overhead imposed by each spe-
cific security or otherwise algorithm implementation and execu-
tion by the implementation’s vendor, that are deemed to be “exter-
nal” to JDSF and may be seen as “black boxes”. This overhead
depends on the mathematical complexity of the algorithm as well
as vendors’ implementation choices over data structures and op-
timizations they may have used in the implementation. Thus, the
total overhead stems from the basic and algorithm implementation
overheads, where the former is deemed to be a constant penalty for
any algorithm implementation, ot = ob + oa.

The design now incorporate the automatic statistic collection and
management as a configuration flag. The statistics capture includes
individual run-time of unit calls as well as extra memory required



Figure 4: marf.security.Storage Package and Classes.

Figure 5: marf.security.confidentiality Package and Classes.

to store security-enhanced beans. Understandably, the statistics
gathering itself induces overhead, both run-time and memory con-
sumption. This may impact the overall turnaround time of the
entire process but generally has very little impact on individual
unit measurements. The turnaround time can be measured more
precisely with the unit measurements turned off. This is espe-
cially pertinent when measuring memory consumption overhead,
which is time costly: writing out serialized objects into byte ar-
rays and comparing their sizes before and after application of the
confidentiality to it. Thus, the turnaround overhead also includ-
ing statistics gathering overhead, os, that can be significant if both
time and memory measurements are activated at the same time,
ot = ob + oa + os. In the current experiments of the confidential-
ity aspect we measure run-time and memory overhead of the two

implementations of CSC-DES and RSA implementations that we
have available for this task including multiple implementations by
different vendors of the same algorithm. Based on the above anal-
ysis we refine our design with the statistics collector based on the
Builder design pattern. We leave out the k-anonymity, l-diversity,
and others from our experiments because their implementation is
not finalized as of this writing and will be provided gradually in
the next releases of JDSF.

4. CONCLUSION
We believe JDSF’s Confidentiality Framework provides a general
testbed for researches to run and compare data privacy related al-
gorithms implemented in Java. We explored a few popular tech-



Figure 6: marf.security.algorithms Package and Classes.

Figure 7: marf.security.adapters Package and Classes.

niques for encryption, encrypted search, k-anonymity, l-diversity,
etc. We treat non-encryption anonymized data as encryption in
our framework, i.e. we use the same API for both except in the
latter case “encryption” means for example “generalization” or
“suppression” (or even “compression”). In general, JDSF’s op-
eration was designed to allow addition of any number of algo-
rithms or techniques to add as plug-ins for comparative study or
when better techniques become available. The parameters and the
configuration of the framework were made available from the sur-
vey/research study of the database security techniques mentioned
earlier. It is also general enough to expand beyond MARF and

HSQLDB, and as a result the open source community can ben-
efit as a whole. JDSF, just like MARF and HSQLDB, is open
source and is hosted at SourceForge.net under the umbrella
of MARF, in its CVS repository. Please contact the primary main-
tainer, Serguei Mokhov, for the latest updates on JDSF.

Future Work
The future work will focus on the refinement of other aspects of
JDSF as well as adding to our collection of implemented algo-
rithms to augment the statistical knowledge of the actual algorithm
implementations by the vendors.



As a further future work we plan on continuing our open-source
development effort of the framework and fully integrating it into
MARF and HSQLDB, along with comprehensive testing suite and
overhead statistics and new algorithm implementations and port-
ing it to other systems that require the features provided by the
framework, as studied e.g. in [9].

Acknowledgements
We would like to thank Dr. Lingyu Wang in supervising the ini-
tial JDSF project. This research work was funded by the Faculty
of Engineering and Computer Science of Concordia University,
Montreal, Canada.

5. REFERENCES
[1] A. Andreu and M.-A. Laverdière. SSHA Digest, Modified.

www.securitydocs.com, 2006. http:
//www.securitydocs.com/library/3439.

[2] J. O. Grabbe. Java Program for RSA Encryption.
laynetworks.com, 2001.
http://www.laynetworks.com/rsa_java.txt.

[3] S. Mokhov. On design and implementation of distributed
modular audio recognition framework: Requirements and
specification design document. Department of Computer
Science and Software Engineering, Concordia University,
Montreal, Canada, Aug. 2006. Project Report. A copy is
found: http://marf.sf.net, last viewed April 2008.

[4] S. Mokhov, I. Clement, S. Sinclair, and D. Nicolacopoulos.
Modular Audio Recognition Framework. Department of
Computer Science and Software Engineering, Concordia
University, Montreal, Canada, 2002-2003. Project Report,
http://marf.sf.net, last viewed April 2008.

[5] S. A. Mokhov. Introducing MARF: a modular audio
recognition framework and its applications for scientific and
software engineering research. In Proceedings of the IEEE
Engineering/Computing and Systems Research
E-Conference (SCSS07/CIISE 2007), University of
Bridgeport, U.S.A., Dec. 2007. Springer. To appear,
http://cisse2007.org.

[6] S. A. Mokhov. Choosing best algorithm combinations for
speech processing tasks in machine learning using MARF.
In S. Bergler, editor, Proceedings of the 21st Canadian
AI’08, pages 216–221, Windsor, Ontario, Canada, May
2008. Springer-Verlag, Berlin Heidelberg.

[7] S. A. Mokhov. Experimental results and statistics in the
implementation of the modular audio recognition
framework’s API for text-independent speaker identification.
In Proceedings of the 6th International Conference on
Computing, Communications and Control Technologies
(CCCT’08), Orlando, Florida, USA, June 2008. To appear,
http://www.infocybereng.org/ccct2008i.

[8] S. A. Mokhov. Study of best algorithm combinations for
speech processing tasks in machine learning using median
vs. mean clusters in MARF. In B. C. Desai, editor,
Proceedings of C3S2E’08, pages 29–43, Montreal, Quebec,
Canada, May 2008. ACM and BytePress. ISBN
978-1-60558-101-9.

[9] S. A. Mokhov. Towards security hardening of scientific
distributed demand-driven and pipelined computing
systems. In Proceedings of the 7th International Symposium
on Parallel and Distributed Computing (ISPDC’08),
Krakow, Poland, July 2008. IEEE Computer Society Press.

To appear, http://ispdc2008.ipipan.waw.pl/.
[10] S. A. Mokhov. Towards Syntax and Semantics of

Hierarchical Contexts in Multimedia Processing
Applications using MARFL. In Proceedings of the 1st IEEE
International Workshop on Software Engineering for
Context Aware Systems and Applications (SECASA 2008),
Turku, Finland, July 2008. To appear,
http://conferences.computer.org/compsac/
2008/workshops/SECASA2008.html.

[11] S. A. Mokhov, L. W. Huynh, J. Li, and F. Rassai. A Java
Data Security Framework (JDSF) for MARF and HSQLDB.
Concordia Institute for Information Systems Engineering,
Concordia University, Montreal, Canada, Apr. 2007. Project
Report. Hosted at http://marf.sf.net, last viewed
April 2008.

[12] S. A. Mokhov, S. Sinclair, I. Clement, D. Nicolacopoulos,
and the MARF Research & Development Group.
Text-Independent Speaker Identification Application.
Published electronically within the MARF project,
http://marf.sf.net, 2002-2008. Last viewed April
2008.

[13] S. A. Mokhov, L. Wang, and J. Li. Simple Dynamic Key
Management in SQL Randomization. In Submitted for
publication at IDEAS’08, 2008. https:
//confsys.encs.concordia.ca/ideas08/.

[14] S. Paavolainen and S. Ostermiller. MD5 hash generator.
ostermiller.org, 2007. http:
//ostermiller.org/utils/MD5.java.html.

[15] D. X. Song, D. Wagner, and A. Perrig. Practical techniques
for searches on encrypted data. University of California,
Berkley.

[16] Sun Microsystems, Inc. Security Features in Java SE.
java.sun.com, 2007. http://java.sun.com/docs/
books/tutorial/security/index.html.

[17] L. Sweeney. k-anonymity: A model for protecting privacy.
In International Journal on Uncertainty, Fuzziness, and
Knowledge-based Systems, pages 557–570, 2002.

[18] The hsqldb Development Group. HSQLDB – Lightweight
100% Java SQL Database Engine v.1.8.0.4. hsqldb.org,
2006. http://hsqldb.org/.

[19] The MARF Research and Development Group. The
Modular Audio Recognition Framework and its
Applications. SourceForge.net, 2002-2008.
http://marf.sf.net, last viewed April 2008.

[20] Unascribed. Sign and Verify a DSA Signature. java2s.com,
2004. http://www.java2s.com/Code/Java/
Security/VerifyaDSAsignature.htm.

[21] Unascribed. CBC-DES Java Implementation. Unascribed,
2007.

[22] L. Wang. INSE691A: Database Security and Privacy,
Course Notes. CIISE, Concordia University, 2007.
http://users.encs.concordia.ca/˜wang/
INSE691A.html.

[23] L. Wang and S. Jajodia. Security in Data Warehouses and
OLAP Systems in The Handbook of Database Security:
Applications and Trends. Springer, Berlin; Michael Gertz,
Sushil Jajodia, editors, 2007.

[24] L. Wang, S. Jajodia, and D. Wijesekera. Preserving Privacy
in On-line Analytical Processing (OLAP). Springer, Berlin,
2007. ISBN: 0-387-46273-2.


