

Abstract — Initial steps toward designing and implementing a
voice-guided approach to robotic manipulator jogging are outlined
in this paper. Even though robotic teach pendants continue to
become more light weight and easy to use, they will always require
an operator to have at least one hand occupied by the teach
pendant during the development of an automation task. We are
developing an intuitive hands-free approach to manipulator
jogging and application development that translates English voice
commands into manipulator movements and program statements.
The system is being implemented and tested on a Stäubli RX60
manipulator and freely available voice recognition packages.

Keywords — Speech Recognition, Robotics, Automation, Natural
Language Processing.

I. INTRODUCTION

The use of robotic manipulators in factory automation is
commonplace. “Automate or Evaporate” is the saying in the
manufacturing world. Industrial robotic systems improve
productivity by increasing throughput and enhancing the
quality of manufactured goods. It is amazing that robotic
automation has existed since the early 1960s - long before
the age of personal computers, the internet and email.
Industrial robotic tasks include welding, material handling,
and product assembly.

Input sensors are often utilized to bring flexibility to and
enhance the capabilities of a robotic system. For example,
camera systems can assist robots in performing quality
control by visual inspection, or guiding a manipulator’s end-
effector to a desired pose. Pressure and proximity sensors are
also commonly use to determine the location of a part, a tool
or the end-effector. Audio input sensors, however, have so
far rarely been used in robotic automation.

Even though robotic teach pendants continue to become
more light weight and easy to use, they will always require
an operator to have at least one hand occupied by the teach
pendant during the development of an automation task. We
are developing an intuitive hands-free approach to
manipulator jogging and application development that
translates English voice commands into manipulator
movements and program statements.

Even though there exists a vast array of robotics journals,
conferences and workshops, and thousands of published
works on numerous aspects of robotic automation, the

literature contains very few contributions on voice-guided
manipulator jogging. [1] describes some initial work on a
voice guided system which was later integrated into a hand
gesture recognition system [2] so that the robot could be
guided using both audio and visual commands. [3] is most
closely related to this work and provides several details on
that particular implementation. There are also some recent
articles in medical literature on commercial voice assisted
robots used in laparoscopic [4] and endoscopic [5] surgeries.
Some of the reasons for the lack of voice guided manipulator
technology include:

 Original industrial systems were not design to incorporate

voice technology into their controller.
o This however is rapidly changing as very

sophisticated robotics programming
environments are emerging, for example:
Stäubli’s Robotics Studio software and VAL3
programming language, FANUC’s Proficy, and
ABB’s Robot Application Builder.

 Controllers and robotic environments are typically noisy
o This is an unavoidable problem, however,

modern microphones and voice recognition
technology do an adequate job in filtering out
background noise.

 Readily available voice recognition packages are still
relatively new and not completely reliable.

o However, several free systems are currently
available that do an adequate job recognizing
commands in a closed domain once properly
trained by their user.

Voice recognition software can be somewhat unreliable when
used across an open domain by numerous users for which it
as not trained. However, because this system will be use for
factory automation tasks by one operator (or perhaps a small
group of operators), very accurate voice recognition can be
achieved on this closed domain if the system is properly
trained.

In this paper, we examine how an audio input sensor can
enhance robotic automation tasks by describe the initial steps
towards designing and implementing a voice guided system
for jogging a robotic manipulator. In particular, we provide a
detailed overview, including an informal qualitative and

Towards Voice-Guided Robotic Manipulator Jogging

Sebastian van Delden and Benjamin Overcash
Division of Mathematics and Computer Science

University of South Carolina Upstate
Spartanburg, SC 29316

{svandelden, beovercash}@uscupstate.edu

quantitative analysis, of the two speech recognition packages
that were used in our experiments.
 The remainder of this paper is organized as follows.
Section II provides a detailed overview of the two speech
recognition software packages that were used in our
experiments. Section III describes the components of the
initial working system that we have implemented including a
portion of the initial grammar, and Section IV concludes the
paper which a summary of current and future work.

II. SPEECH RECOGNITION PACKAGES

We have experimented with two speech recognition
packages: Sphinx [6] and MSAPI [7]. As part of the
contribution of this work we provide specific details on each
system and report on the PROs and CONs including ease-of-
use and initial accuracy that we experienced with each
package.

A Sphinx

Sphinx is based on the Java Speech API developed with
Sun. JSAPI was released on October 26th, 1998. It is not in
a ‘finished’ state however it is provided with some support
for the benefit of third party developers hoping to add speech
recognition to their Java programs.

Sphinx provides wrapper classes for the functions within
the JSAPI which are commonly used within speech
recognition software. These include the microphone, the
recognizer, the dictionary, and the linguistic and acoustic
models. It uses XML formatted configuration files for
predefining properties of the different parts of the program.
The Sphinx system was developed on a Linux platform and
therefore any training systems are also implemented on
Linux. The classes are included as jar files compiled under
Apache Ant Builder. The grammar files are formatted using
JSGF or Java Speech API Grammar Format. The Grammar
is rule base and supports regular expression capabilities and
the importing of external grammar files. Alternate input
files for recognition include linguistic files with n-gram
support.

Our preliminary implementations were derived from demo
examples included with the download and used the Java
Speech API in its original form. The second implementation
used the Sphinx library to produce the same effects. By
using the Sphinx library, we were given easy functionality of
an acoustic analyzer and a dictionary wrapper as well as
several other components that could easily be managed via
the XML configuration file. All of these libraries however
use several methods that require an extensive amount of
memory, larger than that allocated to a Java program by
default and the -Xmx<amount>m switch was needed to
increase the default heap size.

The initial Sphinx implementations functioned by loading
linguistic files that maintained n-gram information on
specified sentences and commands common to the robotic
manipulation. The results were quite good and the linguistic
file was reworked into a JSGF grammar. Initial tests worked
well, however, with the addition of new, and particularly
long commands, the recognition quickly broke down. Even
with careful wording, certain commands have a very low
success rate of recognition. This problem was resolved by
manipulating the internal settings for the recognizer within
the XML configuration file. In particular, we altered:
 The probability of predicting a false positive.
 The probability of needing to insert a word to get a

match.
 The probability of needing to insert a syllable to get a

match.
By increasing the probability of getting a match, the system
would match more frequently, however would produce odd
responses when you spoke something that was not at all a
command. False positive responses dropped significantly by
decreasing the probability of word insertion and increasing
the probability of syllable insertion. This worked quite well
with the exception of number recognition. Firstly, numbers
such as ‘four’ and ‘two’ have a number of words that sound
similar, such as ‘for’ and ‘to’ and ‘too.’ So the grammar
had to accept any form to be equivalent to the number in
order to recognize it. Secondly, numbers such as ‘four’ and
‘five’ sound alike when spoken quickly. Similar problems
exist between ‘three’ and ‘eight’ and ‘two’ and ‘ten’.
 With still more tweaking, the program responded correctly
about 70 to 90% of the time and was therefore adequate
enough for connecting with the robot. The connection, a
simple socket connection, carried V+ formatted commands
to the CS7B controller which was executing a program
which looped the DOS command. For this reason, the Java
program required an ad hoc method for breaking down the
input string from the user and formatting it to V+. The V+
method used to move the robot was DRIVE which allows for
the rotation of a joint by a certain degree, positive or
negative, at a specified speed, which we keep at 10% of the
robot’s fastest speed which is recognized as a safe training
speed.
 The commands that we successfully implemented are the
DRIVE command, the CLOSEI command and the OPENI
command. The ad hoc V+ translation method was quite
robust however and no simple solutions were offered.
 Overall, the Sphinx-4 Speech Library is very robust. It is
fairly easy to implement however requires much extra
memory. The recognition abilities are fair but improvement
would require much time and a much further explanation of
the workings of the libraries. While a training program
could be implemented, the official training program
suggested by Sphinx is Linux based and would not be an

intuitive method for a real-world Windows implementation
due to lack of simplicity. The grammar formatting is
however quite easy to follow and understand.

B MSAPI

 The Microsoft Speech API was first released around
1995, and was supported on Windows 95. This version
included low-level Direct Speech Recognition and Direct
Text To Speech APIs which applications could use to
directly control engines, as well as simplified 'higher-level'
Voice Command and Voice Talk APIs. It has since had
continued support within the Windows OS. It is designed
for implementation among Visual Basic, C++, and more
recently C#. The more current versions of Windows contain
a speech configuration manager in the control panel which
allows you to customize the default text to speech synthesis
voice as well as to create recognition profiles. Microsoft has
its own built in training program which is well developed.

Microsoft SAPI uses XML formatted grammars.
Grammar functionality includes rule defining, property name
and value specifications, optional segments, and lists as well
as rule referencing.

The MSAPI is built into most Windows systems by default
for text-to-speech and voice recognition support. For this
reason, it would be a convenient choice because computers
would not be required to download any additional software.
The Microsoft SAPI also has significant support via MSDN
and the SDK comes with its own well sorted and collected
set of help files and examples. It was far easier to implement
an initial system when compared to the Sphinx API. The
Microsoft SAPI is designed for C++ and Visual Basic
implementation but can be run from anything with OLE
capabilities.
 Surprisingly the examples were rather in-depth
implementations and we had to examine them very carefully
before identifying the common components needed to
produce a simple program. The recognizer supports both
static and dynamic grammars which can be created in
memory or loaded via file or dll. The grammars are
formatted in XML and support rule creation, rule
referencing, optional sections, and lists. The most import
feature being the property name and value support for
phrases. This allows the recognized text to hold an extra
identifying value. The recognizer is event driven and
requires few commands to set up. Within the recognition
event it is possible as well to access the property values,
which in the grammar we made equal to the V+ command
equivalent to the action. For example, rotating a join
corresponds to the DRIVE command, one, two and three
correspond to 1, 2 and 3, and open / close gripper commands
correspond to OPENI and CLOSEI.
 The recognition provided response of similar quality of the
Sphinx API at first. However, using Microsoft’s built-in

speech configuration dialog control panel, we simply
adjusted the recognizer to produce slower but more accurate
results and a vast improvement ensued.

Winsock was introduced into the program to function in
the same way as the Java implementation and results were
about 95-97% accuracy. We then added dynamic rule
support to the grammar being used and provided support for
adding variables corresponding to the V+ HERE command
which remembers a location. The program interface also
lists the variables created. The variable names, being outside
of the grammar, do not always end up being exactly what
was intended, so keeping track of how the computer recorded
them is important. With the commands stored in memory
within a virtual grammar rule, they can then be easily
recalled and recognized in combination of saying ‘Go to’ or
something of that nature in order to execute the MOVE
command in V+. This worked with large success and would
provide support for complex movements and much
expansion into saving variables for future loading/use,
defining methods at run-time for batch execution, and
defining frames at run-time as well.
 Overall, the MSAPI implementation is quite successful.
There are little extra files required for successful execution
of the program and there is much support both within the
package and on MSDN however most of it is in C++. The
grammar design is rather confusing and would not be easily
modified, however, its complexity does provide support for
many powerful features. The MSAPI is also far less taxing
on memory.

III. INITIAL WORKING SYSTEM
An initial working system has been implemented and a
screenshot of the system is shown in Figure 1. The three
windows are as follows:

 The V+ Voice Command Interface program which
controls the recognition and transmission of
commands.

 The Debug Window, which is a child process of the
V+ Voice Command Program, monitors the V+
Voice Command Program’s variables, and displays
the text being received by the CS7B controller.

 The Tera-term Window displaying the CS7B
controller terminal.

The first two program windows are explained in some more
detail below while the third is simply the Tera-term software
and needs no further explanation.

A V+ Voice Command Interface

The V+ Voice Command Interface is implemented in
Microsoft Visual Basic 6.0 for simplicity and lack of
overhead. The menu system has components for loading

grammar files (*.XML), specifying the socket to monitor for
connections, and toggling the display of the debug window.

The upper left text field displays speech recognized by the
MSAPI recognition event. If the recognized speech also
matches the grammar, then a listing of applicable rules
follows. Each rule displays the name of the rule as specified
in the loaded grammar. After the rules, the properties are
shown. Properties are specified in the grammar as a defined
property name and given a value dependant on the phrase
matched. The screenshot shows the property value of
“JOINT” and its matched phrase’s value is “4”. The program
iterates through the properties and concatenates them into a
string which represents the command to be transmitted to the
controller.

The text field to the right displays variables. When the
phrase matching the command “HERE” is recognized, the
grammar is set to match any single word phrase the follows.
This word is then dynamically added to the grammar that is
loaded and the word is added to a variable list to help the
user of the program to keep track of stored variables. This is
also important because if the recognizer misunderstands
what you say and saves the variable as a slightly different
word that you expected, you can easily see the difference.
For example, the command “set position alpha” may issue
the command “HERE although” due to a misrecognition of
the work “alpha.” This is a result of the word “alpha” not
being part of the grammar, however now that the word
“although” has been added, it can be recognized with much
higher precision when referring to it later.

The text boxes to the bottom left display status
information, including which client is connected and the
port currently being used. The status of the connection and
send/receive process is also displayed. The last box displays
the command being sent to the CS7B controller.

The text field in the bottom-middle of the window displays
a to-be-completed feature that allows you to enter a string
which the program will emulate as speech for the recognizer
to break down.

The two command buttons toggle the starting and stopping
of the recognizer and the connection / disconnection of the
socket. And lastly, the status bar at the bottom shows the
loaded grammar, recognition status, and socket connectivity
status.

B Debug Window

The upper part of the debug window displays a listing of the
variables and their values. The boolean values include: if the
grammar is loaded, if the recognizer is loaded, if the socket
is listening, and if it is connected. The other variables
displayed include client value, client IP address, port value,
and the status. All of the variables belong to debug’s parent
window and are referenced publicly.

The bottom text field displays the information being
received from the program running on the CS7B controller.
This includes notification of connection, and echo of the
command send, and notification of command received.

Fig. 1 Screenshot of the initial working system.

The last text field provides a way of sending a typed
command directly through the socket meant for debug
purposes of realignment, etc. The commands allowed are
only those executable by the DOS V+ command. Any other
command will result in the V+ program incorrectly
terminating.

C Initial Grammar

Figure 2 outlines a portion of the grammar that we have
implemented in XML format which is recognized by
MSAPI. The opening definition of the grammar is specified
with <GRAMMAR>…</GRAMMAR>.

The components of <GRAMMAR> are <RULES>. Rules are
given names and within them are the specifications of what
defines a recognized rule. Having a TOPLEVEL of ACTIVE
specifies that a rule is the default entry point of the grammar.
Other optional components are the DYNAMIC value which
when set to true allows for dynamic appendance to the rule.

Inside rules, multiple <PHRASE> properties are specified.
A phrase contains the spoken words to be recognized. If all
phrases are matched, then the rule is successfully matched
and grammar is recognized. Phrases, shortened to <P> can
be given values that are returned to the property specified by
a parent entity. Values can be specified with “VAL” as a
number or “STRVAL” as a string. A phrase consisting of any
spoken text can be defined with “…” but cannot be referenced
from the recognition event although using <DICTATION> will
reference a word which can be further referenced. This
latter feature is affective for implementing dynamic
grammars.

To make the rules more accessible, three components may
be implemented:

 A rule reference defined by <RULEREF> may be
implemented which acts as a direct link to the
rule specified.

 The <OPT> or <O> component shows an
optional phrase for recognition.

 A <LIST> or <L> component allows for a list of
phrases where only one of which may be
matched. The list can also be given a property
name to be matched with a property value of
one of its possible phrase matches.

The three components can be combined in many ways to
form very powerful grammars. Many more details on XML
tags are used by MSAPI can be found here [9].

Fig. 2. A portion of the system’s initial grammar in XML format which is
recognized by MSAPI.

D Online Demo

We have captured a short video demo of system which
includes sound. A screen shot of the demo is shown in
Figure 3 and the link to the video is also included.

Fig 3. User interacts with our voice guided robotic system. To view video demo
(with sound) please go to:
http://faculty.uscupstate.edu/svandelden/VoiceJogging1.wmv

The system in this video was not yet trained on the user’s
specific voice. With a careful examination of the video demo,
you will notice that the system incorrectly recognized “fifty
degrees” as “eighty degrees”. Also, one of the instructions
had to be repeated twice before the system recognized it.
Otherwise, the system recognized all of the other commands
perfectly, performing joint rotations, training points, and
opening/closing the gripper. Also, the hand held microphone
is being replaced by a wireless headset to achieve a truly
hands-free training environment.

IV. CONCLUSIONS AND FUTURE WORK
Initial results are very encouraging and indicate to us that
implementing an accurate voice-guided system for jogging a
robotic manipulator can be attained using currently available
speech recognition APIs. Overall, we feel that the MSAPI
speech recognition package was easier to integrate into the
system and gave us better initial results when compared to
the Sphinx system.

This initial work is currently being expanded in several
ways:

 We are experimenting with an additional C++ based voice

recognition system [8] and will be comparing it to the
Sphinx and MSAPI systems.

 We are currently working on a completed formal grammar
that encompasses all of the commands needed to design
any automation task on the Stäubli RX series of
machines which uses the V+ system.

 Once a completed grammar is finalized, we will be
performing a more detailed and formal quantitative and
qualitative analysis to determine if the voice-guided
system improved operator productivity during
application development.

 We will also be adapting the current system to a Stäubli
RS20 manipulator which uses Stäubli’s most current

programming environment and VAL3 language. We
will extend the current system to the VAL3 language
and, in the process, work to develop a general system
that is easily adapted to new iterations of robotic
programming languages.

ACKNOWLEDGMENT
We would like to express our sincere thanks to the Stäubli
Corporation for making this research possible by generously
donating six RX60 manipulators and a RS20 manipulator to
our institution.
 We would also like to thank USC Upstate’s Research
Advisory Council for their partial funding of this work.

REFERENCES
[1] T. Yoshidome, N. Kawarazaki, and K. Nishihara. “A Robot

Operation By A Voice Instruction Including A Quantitative
Expression,” In Proc. of the 5TH Franco-Japanese Congress
& 3RD European-Asian Congress On Mechatronics, pp 123-
126, 2001.

[2] P. Norberto. “Robot-by-voice: Experiments on commanding an
industrial robot using the human voice,” Industrial Robot
Journal, vol. 32(6), pp 505-511, 2005.

[3] N. Kawarazaki, T. Yoshidome, and K. Nishihara, “An
Assistive Robot System Using Gesture and Voice
Instructions,” In Proc of the 2nd Cambridge Workshop on
Universal Access and Assistive Technology (incorporating the
5th Cambridge Workshop on Rehabilition Robotics), 2004.

[4] S. Shew, D. Ostelie, and G. Holcomb III. “Robotic Telescopic
Assistance in Pediatric Laparoscopic Surgery,” Pediatric
Endosurgery & Innovative Techniques, vol. 7(3), 2003.

[5] C. Nathan, V. Chakradeo, K. Malhotra, H. D’Agostino, and R.
Patwardhan. “The Voice-Controlled Robotic Assist Scope
Holder AESOP for the Endoscopic Approach to the Sella,”
Skull Base, vol. 12, pp-123-132, 2006.

[6] Sphinx-4 Speech Recognizer written in Java.
 Collaboration between the Sphinx group at Carnegie Mellon
University, Sun Microsystem Laboratories, Mitsubishi Electic
Research Labs, And Hewlett Packard, contributions from
University of CA at Santa Cruz, and MIT.
http://cmusphinx.sourceforge.net/sphinx4/

[7] Microsoft Speech Application Programming Interface (API)
and SDK, Microsoft Corporation,
http://www.microsoft.com/speech.

[8] C. Becchetti. “Speech recognition : theory and C++
implementation,” Wiley publishers, 1999.

[9] Grammar Format Tags for The Microsoft Speech API, MSDN
Library.
http://msdn2.microsoft.com/en-us/library/ms723634.aspx

